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Abstract
Conventional AVO inversion employs Zoeppritz equations and various approximations to them to obtain the reflection coef-
ficients of plane-waves, which are confined to a certain (small) angle range (mostly below 40◦ ). However, near the critical 
angles (wide-angle), reflections at the post-critical angles provide much more potential for velocity and density inversion 
because of the large amplitudes and phases-shifted waveforms, while the Zoeppritz equations are not applicable anymore. 
Hence, there is a strong demand for the research into wide-angle AVO. With reflection coefficients at wide-angle correspond-
ing to the features of rational function, we try to approximate the seismic data with vector fitting which is used to obtain the 
rational zero-pole and residual properties of wide-angle AVO. We apply this technique to classify AVO type and recognize 
the lithology. Our experiment shows that extending our research into wide-angle AVO is very promising in gathering richer 
data for a more accurate seismic analysis.
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Introduction

In seismic exploration, AVO (Amplitude Variation with Off-
set) is a technology which studies the lithology and detects 
hydrocarbon using amplitude information. The AVO inver-
sion is based on the AVO characteristics to estimate the elas-
tic parameters of rock and deduce the lithology of medium 
according to seismic data. Before inversion, the critical and 
post-critical reflections are traditionally muted, because 
NMO correction will lead to the stretching of remote off-
set and to avoid the complexity of interferences of reflected 
and head waves (Krail and Brysk 1983; Winterstein 1985). 
However, with further research, it is found that the anoma-
lous amplitude and phase anomalies near the critical angles 

are favorable for inversion. AVO studies have shown that 
large-offset information is needed to extract density informa-
tion. (Debski and Tarantola 1995; Downton and Ursenbach, 
2006).

However, in AVO analysis, the traditional method to 
approximate the AVO response is by using linear formulas 
including the triangular function of reflection angle (Bort-
feld 1961; Aki and Richards 1980; Shuey 1985). But it is 
only applicable at the small incidence angles, because there 
is a strong impedance difference near the critical angles, the 
Zoeppritz approximation is not applicable (O’Brien 1963; 
Macdonald et al. 1987). Therefore, how to characterize 
wide-angle AVO is an important and meaningful issue.

The introduction of long recording cables and new acqui-
sition methods, such as submarine nodes, makes it possible 
to record large-offset reflections. The critical angle is easy 
to reach in structures with large velocity ratios, such as salts, 
volcanic rocks and carbonates. Therefore, the seismic reflec-
tions at the angle above the critical angle are becoming more 
and more common (Zhu and Mcmechan 2015).

In general, when seismic exploration is carried out, the 
actual acquired seismic data are excited by the point source, 
which produces spherical wave (Červený and Hron 1961; 
Haase 2004; Ayzenberg et al. 2009; Ursenbach et al. 1949 ). 
And so far, a lot of studies have been devoted to the reflec-
tion of spherical waves on a planar interface in two-layer 
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homogeneous half-space. We can find that the spherical-
wave reflection coefficients are related to rational function.

Studies have found that when the incident angle is larger 
than the critical angle, the offset will be larger and the sig-
nal-to-noise ratio of the seismic data will be higher. In the 
case of ignoring the loss of seismic wave energy, the energy 
of the wide-angle seismic reflection wave is much greater 
than that of the non-wide-angle reflection wave, which is a 
very favorable condition for the processing of seismic data. 
Development of wide-angle seismic exploration is very 
necessary.

In this paper, we use rational function to fit seismic data 
and characterize AVO attributes by zero-pole and residual 
properties. The main body of this paper is divided into two 
parts., fitting and applying. In the fitting part, we use rational 
function to fit seismic coefficient curves whose form will be 
elaborated in the theory, and to obtain zero-pole and residual 
properties and discuss the feasibility of these attributes; in 
the applying part, we apply this method to classify AVO, 
recognize hydrocarbon signatures, and compare with the 
traditional polynomial fitting technique. This new method 
is used to describe the characteristics of seismic waves more 
accurately, and to explore more useful information from 
seismic record.

Theory

AVO describes the amplitudes variation with offset, while 
PVO means the phases variation with offset; these two 
attributes can be formulated as an complex function with 
variable �(the incident angle):

where |H(�)| represents AVO and �(�) represents PVO; this 
formula is very similar to the frequency response of a cir-
cuit system. Formula (1) can be expanded as summation of 
rational function:

where s = j2�r , Ak denotes the pole, Ck denotes the cor-
responding residual for each pole, and r is defined as offset, 
D is the delay factor that controls the amount of delay to fit 
the data.

By summarizing the previous research, the spherical-
wave reflection coefficient can be expressed as follows for 
a homogeneous half-space medium model (Li et al. 2016):

(1)H(�) = |H(�)|ei�(�)

(2)H(s) =

n∑
k=1

Ck

s − Ak

+ D

where B is the plane PP-wave reflection:

v1, v2, �1, �2 denotes the P-wave velocity and density of 
the upper and lower medium, respectively, J0 is the zero-
order Bessel function, r is the source–receiver offset 
( r = (h + z) ∗ tan� ), h and z are the vertical distance from 
the source and the receiver to the interface, respectively, i is 
the imaginary unit and x = cos� , � is the angular frequency.

The formula (3) shows the spherical-wave reflection coef-
ficient follows the rational function form, so we propose to use 
rational function (2) to fit seismic reflection coefficients and 
use the least-square method to solve the problem; finally, the 
zero-pole and residual attributes are achieved.

In the formula (2), the unknowns Ak appear in the denomi-
nator, it is a nonlinear problem, so the Vector Fitting algorithm 
(Gustavsen and Semlyen 1999) is used to solve the problem, 
the nonlinear problem can become a linear problem, and then 
the least-square method is used to solve it.

Specify a set of initial poles Ak in (2), then multiply H(s) 
with a formula �(s) , where �(s) is a rational approximation to 
be determined; this gives the augmented problem:

Note that in (5) the rational approximation for �(s) and the 
approximation for �(s) H(s) have the same poles.

Multiplying the second row in (5) with H(s) draw the fol-
lowing relation:

Or

Equation (6) is linear in its unknowns Ck , C̃k . So writing 
for several incident angle points, the overdetermined linear 
problem is given:

(3)Rsph
pp

=

∫ 0

1
B(x)J0(�r

√
1 − x2∕v1)e

i�x(h+z)∕v1dx

+i ∫ ∞

0
B(x)J0(�r

√
1 + x2∕v1)e

−�x(h+z)∕v1dx

∫ 0

1
J0(�r

√
1 − x2∕v1)e

i�x(h+z)∕v1dx

+i ∫ ∞

0
J0(�r

√
1 + x2∕v1)e

−�x(h+z)∕v1dx

(4)B(x) =
�2v2x − �1v1

√
1 − v2

2
∕v2

1
(1 − x2)

�2v2x + �1v1

√
1 − v2

2
∕v2

1
(1 − x2)

(5)
�
�(s)H(s)

�(s)

�
=

⎛⎜⎜⎝

∑n

k=1

Ck

s−Ãk

+ D

∑n

k=1

C̃k

s−Ãk

+ 1

⎞⎟⎟⎠

(6)
n∑

k=1

Ck

s − Ãk

+ D =

[
n∑

k=1

C̃k

s − Ãk

+ 1

]
H(s)

(7)(�H)fit(s) = �fit(s)H(s)

(8)Ax̃ = b
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where the unknowns are in the solution vector x̃ . Equation 
(8) is solved as a least-square problem as follows: for a given 
incident angle �k we can get sk and:

where

Thus, a rational function approximation for H(s) is easy to 
get from (6) now.

If each sum of partial fractions of (6) is written as a frac-
tion, it becomes obvious that it can be expressed as the form 
of zeros and poles:

where zk, (k = 1, 2, 3… n) are the zeros of (�H)fit(s) , Ãk are 
the poles of �fit(s) and (�H)fit(s) , z̃k are the zeros of �fit(s) . 
Finally we can get:

Equation (14) shows the poles of H(s) become equal to the 
zeros of �fit(s) . Thus, by calculating the zeros of �fit(s) we 
can get a good set of poles for fitting the original function 
H(s). And the residuals for H(s) can be directly calculated 
from Eq. (14).

Vector Fitting is equally well suited for fitting vectors as 
it is for scalars. By replacing the scalar by a vector, it will 
result in all elements of the fitted vector sharing the same 
poles.

Results

Fitting

In this example, the spherical-wave reflection coefficient 
model of Castagna et al. (1998) and Li et al. (2016) is used, 
shown in Table 1, where v1, v2, �1, �2 as mentioned earlier.

(9)Akx̃ = bk

(10)Ak =
[

1

sk−Ã1

⋯
1

sk−ÃN

1
−H(sk)

sk−Ã1

⋯
−H(sk)

sk−ÃN

]

(11)x̃ =
[
c1 ⋯ cN D c̃1 ⋯ c̃N

]

(12)bk = H(sk)

(13)(�H)fit(s) = h

∏n+1

k=1
(s − zk)∏n

k=1
(s − Ãk)

, �fit(s) =

∏n

k=1
(s − z̃k)∏n

k=1
(s − Ãk)

(14)H(s) =
(�H)fit(s)

�fit(s)
= h

∏n+1

k=1
(s − zk)∏n

k=1
(s − z̃k)

Firstly, the rational fitting property is demonstrated by 
fitting the AVO coefficient curves in frequency domain. 
Because the spherical-wave reflection coefficient is fre-
quency dependent, so in the frequency domain, the rational 
function fitting is done to the original wide-angle seismic 
data corresponding to each frequency.

The initial poles are predetermined; first, the optimum fit-
ting conditions, including poles and order, of each frequency 
are determined by observing the relative error tolerance in 
the iteration. When the relative error tolerance is less than 
− 40 dB, the iterations are stopped and optimal fitting ampli-
tude and phase are achieved. The point source has a Ricker 
wavelet with dominant frequency of 10 Hz, and hence we 
choose the curve of 10 Hz to analysis.

The frequency-domain AVO coefficient curve′ s ampli-
tudes and phases variation with angles of model A–D are 
shown in Fig. 1 [each sub-figure (a) and (c)], and the fitting 
results are shown in the same figure. It is clear that the com-
plex AVO curves are almost fitted. The poles distribution 
and the relative residuals are plotted in each sub-figure (b) 
and (d). From the results, we can see that the smaller the 
critical angle, the more serious the oscillation after it, and 
the more poles are needed to fit. Also, the curves with the 
larger critical angle can be fitted with less poles, so the criti-
cal angle has an effect on the order of rational fitting.

Although much more poles are needed to fit the complex 
AVO, the first few residuals are much more than the others, 
so we guess the first few residuals are the main attribute of 
the complex AVO. In Fig. 2 Model E (fit result), at least 12 
pole and residual pairs are needed to fit the curve with the 
tolerance less than − 40 dB. Now the first 6 large poles and 
residuals are used to reconstruct the curve, and results are 
shown in Fig. 2 Model E (reconstruct result); it can be seen 
the curve reconstructed by using these 6 poles and residu-
als are basically close to the original curve, and only a few 
oscillations after the critical angle are not fitted. So these 
larger poles and residuals do contain most information of the 

Table 1   Parameters of AVO models (two-layer models)

Model v1∕(ms−1) �1∕(g cm
−3) v2∕(ms−1) �2∕(g cm

−3)

A (avo1 gas/
sand)

3093 2.40 4050 2.21

B (avo1 wet/
sand)

3093 2.40 4114 2.32

C (avo2 gas/
sand)

2642 2.29 2781 2.08

D (avo2 wet/
sand)

2642 2.29 3048 2.23

E 2000 2.40 2933 2.20
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Applying

Based on previous research results, in this section, we use 
this method to classify AVO and recognize hydrocarbon 
signatures. For the different properties of models A–D, we 

make cross-correlation analysis of them. For vertical com-
parison to classify AVO, we compared models A and C, 
they all belong to gas/sand model, but model A represents 
AVO class 1, while model C represents class 2; models B 
and D, and they all belong to wet/sand model, but model 
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B represents AVO class 1, while model D represents class 
2. For horizontal comparison to recognize hydrocarbon 
signatures, we compared models A and B, and they all 
belong to AVO class 1, but model A represents gas/sand 
model, while model B represents wet/sand; models C and 
D all belong to AVO class 2, but model C represents gas/
sand model, while model D represents wet/sand.

First of all, we get a set of curves of models A–D, and 
these curves are obtained by adding random perturbations 
to geological parameters. The amplitudes of these curves 
are as Fig. 5 shows.

Then as in the preceding fitting process, the rational func-
tion zero-poles and residuals are obtained. At the same time, 
for comparison, we also make polynomial fitting of the data 
and get the intercept-gradient parameters for small angles 
lowered 40◦.

As mentioned earlier, the first residual often contains 
more information about the curves, so we compare the 
intercept-gradient attribute with the first residual under 
the same scale. The contrast result of model A and C are 
shown in Fig. 6. From these experiments, Fig. 6a shows the 
intercept-gradient property and Fig. 6b shows the residuals 
distribution. In each picture, the circle represents the model 
A, and the cross denotes the model C.

It can be seen from the diagram that, under the same 
scale, the two AVO classes expressed by the intercept-gra-
dient attribute are almost overlapped and can’t be distin-
guished, while the two AVO classes expressed by the resid-
ual attributes can be distinguished clearly. And the results 
of models B and D are shown in Fig. 7, and we can get the 
same results as Fig. 6 shows.

In addition to classify AVO, our method can also recog-
nize hydrocarbon signatures and classify reflector responses. 
Figure 8 shows the contrast results of models A and B, and  

Fig. 4   Model E: a Intercept-
gradient variation with �

1
 . b 

Amplitudes of residuals varia-
tion with �

1
 . c Intercept-gradient 

variation with 
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Fig. 6   Comparison of AVO 
attributes from polynomial 
and rational function fitting 
method (model A: circle, model 
C: cross). a Intercept-gradient 
cross-plot (polynomial fitting). 
b Largest residuals distribution 
(rational function fitting)
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Fig. 7   Comparison of AVO 
attributes from polynomial 
and rational function fitting 
method (model B: circle, model 
D: cross). a Intercept-gradient 
cross-plot (polynomial fitting). 
b Largest residuals distribution 
(rational function fitting)
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Fig. 9 shows the contrast results of models C and D. And by 
calculating the center distance between the AVO models, the 
intercept-gradient distance between the models A and B is 
about 0.0483 and between models C and D is about 0.0557; 
however, according to the zero-pole and residual characteris-
tics of rational function fitting, the distance between the larg-
est residuals of models A and B is about 0.1006 > 0.0483 , 
between models C and D is about 36.0907 > 0.0557 . There-
fore, the distance calculated by our method is larger than the 
original polynomial fitting method, and the use of rational 
zero-pole and residual properties can classify reflector 
responses more accurately.

Conclusion

The purpose of this work is clear: to extract more useful 
information out of seismic data by extending the validity 
range of AVO analyses to larger angles. In order to achieve 
this goal, we have applied a new method to represent 

wide-angle AVO, that is rational function fitting, based on 
Vector Fitting algorithm.

By doing rational function fitting to AVO curves, we 
obtain better approximations of wide-angle AVO and get 
sparse zero-pole and residual properties and thereby can 
improve the classification of AVO and reflector responses.

By using this method, the research range can be extended 
to wide-angle, and the fitting effect is ideal in large offsets. 
The residual properties are more sensitive to medium veloc-
ity or density than intercept-gradient properties, which can 
be more accurately characterized AVO attributes. The limi-
tation of polynomial fitting technique only in the small inci-
dence angles can be improved. And under the same scale, 
the intercept-gradient attributes of AVO models are not easy 
to classify, while the zero-pole and residual attributes can 
be easily classified. So, the AVO or reflector responses can 
be classified more accurately by using rational function fit-
ting than polynomial fitting. In this paper, our research is 
limited in the two-layer medium, and the medium analysis 
with more layers is our future work.

Fig. 8   Comparison of AVO attributes from polynomial and rational function fitting method (model A: circle, model B: cross). a Intercept-gradi-
ent cross-plot (polynomial fitting). b Largest residuals (rational function fitting)
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