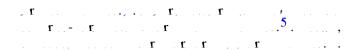
ORIGINAL ARTICLE

GMM discriminant analysis with noisy label for each class

Jian-wei Liu¹ · Zheng-ping Ren¹ · Run-kun Lu¹ · Xiong-lin Luo¹

Received: 8 June 2019/Accepted: 13 May 2020/Published online: 1 June 2020 © Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract


1 Introduction

 $\ldots b, \ r \cdot b \ \ldots \ \cdot b \ \ldots \ \cdot r \ \ldots \ \cdot r \ \ldots \ \cdot r \ \ldots$, , **r**, \ldots $[1, \ldots, r]$.b , r m, r , . . . rb , b , r , r , r , r , r , r , r , r , r , r , **r** . . . **b** . . **r** . **t** . . . **r** $[1,2,\ldots,r]$ $r = \underbrace{l \, 1}_{\sim} \, (1) \qquad \dots \quad b_{\ell-1} \, \dots \qquad \qquad r_{\ell-1} \, r \quad , \, \dots \quad \dots \quad r_{\ell-1} \, .$..,.,**r** r,.b . ., .. , r , , , b ∧ , , , , , . [20. , , , , , , , r (2) , , , , , b, , , , , , , r \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}

[⊠] J...-

 $\ldots \ldots r \cdot b \cdot \ldots \ldots \ldots r \cdot b \cdot b \cdot \ldots$., .,,, . **r** ., ., .**b** , ,, **r** . . , , , $oldsymbol{\mathsf{A}}_{\ldots}$. (), $oldsymbol{\mathsf{A}}$), . . , $oldsymbol{\mathsf{r}}_{1}$ $oldsymbol{\mathsf{r}}_{2}$, . . . , $oldsymbol{\mathsf{A}}_{2}$. . . , $r \mathrel{\raisebox{1pt}{$\scriptstyle \wedge$}} \ldots \ldots \ldots r \mathrel{\raisebox{1pt}{$\scriptstyle \wedge$}} b \mathrel{\raisebox{1pt}{$\scriptstyle \wedge$}} \ldots \ldots r \mathrel{\raisebox{1pt}{$\scriptstyle \wedge$}} r \mathrel{\raisebox{1pt}{$\scriptstyle \wedge$}} \ldots \ldots \ldots \ldots$

1.1 Discriminant analysis based on Gaussian mixture models

1.1.1 Description of the problem with the noise labels

$$\mathbf{x} = (x_1, ..., x_d) \in \mathcal{X}, \quad \mathcal{X} = \mathcal{R}^d$$

 $\Omega = \{\omega_1, \omega_2, \dots, \omega_K\}. \qquad \qquad \mathbf{r} \quad \mathbf{x} \in \mathcal{X} \quad \mathbf{r} \qquad \mathbf{r} \quad \mathbf{r} \quad \cdots \qquad \mathbf{r} \quad \mathbf{r} \quad \cdots \qquad \mathbf{r} \quad \cdots \qquad \mathbf{r} \quad \mathbf{b} \quad \mathbf{b} \qquad p(\omega), \ \omega \in \Omega. \qquad \qquad \mathbf{r} \quad \cdots \qquad \mathbf$

$$\mathcal{S}_{\omega} = \{\mathbf{x} \in \mathcal{X}\}, \ \omega \in \Omega \ ; \ \mathcal{S} = \begin{bmatrix} \mathbf{X} \\ \omega \in \Omega \end{bmatrix}, \ |\mathcal{S}| = \mathbf{X} \\ \omega \in \Omega \end{bmatrix}$$

$$L_{\omega} = \frac{1}{|\mathcal{S}_{\omega}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}_{\omega}} \cdot p(\mathbf{x}|\omega)p(\omega), \quad (\omega \in \Omega),$$

$$\tilde{p}(\mathbf{x}|\tilde{\omega}) = \mathbf{X} p(\mathbf{x}|\omega)p(\omega|\tilde{\omega}), \mathbf{x} \in \mathcal{X}, \ \tilde{\omega} \in \Omega,$$

 $\tilde{\omega} \in \Omega$, \mathbf{r} , \mathbf{r} , \mathbf{r} , ...

1.1.2 Gaussian mixture model

r., r., b.b., r., b.b., r., b.b., r.

$$\begin{array}{c} \mathbf{X} \\ \omega \in \Omega \\ \boldsymbol{\omega} \in \Omega \\ \boldsymbol{\omega} \in \Omega \\ \boldsymbol{\omega} \in \Omega \\ \boldsymbol{\omega} \in \Lambda \\ \boldsymbol{\omega} \in \Omega \\ \boldsymbol{\omega} = \boldsymbol{\omega} \\ \boldsymbol{\omega} \in \Omega \\ \boldsymbol{\omega} = \boldsymbol{\omega} \\ \boldsymbol{\omega} \in \Omega \\ \boldsymbol{\omega} = \boldsymbol{\omega} \\ \boldsymbol{\omega} = \boldsymbol{$$

$$h_{\omega,m} = \frac{P^{W_{\omega,m}g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}}{W_{\omega,m}g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}}$$

$$= \mathbf{r}(m|\mathbf{x}, \omega)$$

$$\mathbf{A} \quad \mathbf{r} \quad () \quad () \quad \mathbf{r} \quad () \quad \mathbf{b} \quad \mathbf{r} \quad ()$$

$$\mathbf{x} \quad \mathbf{x} \quad \mathbf{x} \quad \mathbf{x} \quad \mathbf{x}$$

$$Q = \frac{I(\tilde{\omega} = \omega)}{\mathbf{r}(\tilde{\omega} = \omega)} \quad () \quad \mathbf{x} \quad$$

1.1.3 Updating

 $\Theta = \{\theta_{\omega}\}_{\omega \in \Omega}, \ \Gamma = \gamma_{\tilde{\omega}, \omega \quad \tilde{\omega} \in \Omega}, \qquad \Pi = \{\pi_{\omega}\}_{\omega \in \Omega}.$

$$\frac{Q}{\Sigma_{\omega,m}} = -\frac{X}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\mathbf{x} \in \mathcal{S}}{X} \left\{ p(\omega | \mathbf{x}, \tilde{\omega}) \ \mathbf{r}(m | \mathbf{x}, \omega) \right.$$

$$\cdot \Sigma_{\omega,m}^{-1} - \Sigma_{\omega,m}^{-1} \mathbf{x} - \mathbf{\mu}_{\omega,m} \mathbf{x} - \mathbf{\mu}_{\omega,m} \overset{\mathbf{T}}{\mathbf{T}} \Sigma_{\omega,m}^{-1} = 0 \Rightarrow \Sigma_{\omega,m}$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\mathbf{x} \in \mathcal{S}}{P} p(\omega | \mathbf{x}, \tilde{\omega}) \ \mathbf{r}(m | \mathbf{x}, \omega) \ \mathbf{x} - \mathbf{\mu}_{\omega,m} \ \mathbf{x} - \mathbf{\mu}_{\omega,m} \overset{\mathbf{T}}{\mathbf{T}}$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\mathbf{x} \in \mathcal{S}}{P} P(\omega | \mathbf{x}, \tilde{\omega}) \ \mathbf{r}(m | \mathbf{x}, \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \underset{\tilde{\omega} \in \Omega}{P} I(\tilde{\omega} = \omega)$$

$$= \frac{P}{\tilde{\omega} \in \Omega} I(\tilde{\omega} =$$

$$\begin{split} & \frac{\mathcal{Q}_{\lambda_{w_{\omega,m}}}}{\mathcal{W}_{\omega,m}} = 0 \\ & \overset{\mathbf{X}}{\mathbf{X}} = \underbrace{I(\tilde{\omega} = \omega)}_{p(\omega|\mathbf{x},\tilde{\omega})} \underbrace{\mathbf{r}(m|\mathbf{x},\omega)}_{p(\omega|\mathbf{x},\tilde{\omega})} \frac{1}{w_{\omega,m}} - \lambda_{w_{\omega,m}} \\ & \overset{\tilde{\omega} \in \Omega}{\Rightarrow} \underbrace{\lambda_{w_{\omega,m}} w_{\omega,m}}_{w_{\omega,m}} = \underbrace{I(\tilde{\omega} = \omega)}_{\mathbf{x} \in \mathcal{S}} \underbrace{p(\omega|\mathbf{x},\tilde{\omega})}_{\mathbf{x} \in \mathcal{S}} \mathbf{r}(m|\mathbf{x},\omega) \\ & \overset{\text{r} \text{ r} \text{ r}}{\Rightarrow} \underbrace{w_{\omega,m}}_{\lambda_{w_{\omega,m}}} \underbrace{X}_{w_{\omega,m}} \\ & \overset{\text{m} \in \mathcal{M}}{\Rightarrow} \underbrace{\lambda_{w_{\omega,m}}}_{p(\omega|\mathbf{x},\tilde{\omega})} \underbrace{X}_{m \in \mathcal{M}} \\ & = \underbrace{I(\tilde{\omega} = \omega)}_{\tilde{\omega} \in \Omega} \underbrace{p(\omega|\mathbf{x},\tilde{\omega})}_{m \in \mathcal{M}} \mathbf{r}(m|\mathbf{x},\omega), \end{split}$$

 $w_{\omega,m} = \frac{P \sum_{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) P \sum_{\mathbf{x} \in \mathcal{S}} p(\omega | \mathbf{x}, \tilde{\omega}) r(m | \mathbf{x}, \omega)}{\sum_{\tilde{\omega} \in \Omega} I(\tilde{\omega} = \omega) \sum_{\mathbf{x} \in \mathcal{S}} p(\omega | \mathbf{x}, \tilde{\omega}) r(m | \mathbf{x}, \omega)}$ (12)

 $c_{\mathbf{b}}$..., $c_{\mathbf{r}}$... $c_{\mathbf{r}}$... $c_{\mathbf{r}}$... $c_{\mathbf{r}}$... $c_{\mathbf{r}}$... $c_{\mathbf{r}}$

$$\frac{Q_{\gamma_{\tilde{\omega},\omega}}}{\gamma_{\tilde{\omega},\omega}} = \underset{\mathbf{x}\in\mathcal{S}}{\mathbf{X}} p(\omega|\mathbf{x},\tilde{\omega}) \frac{1}{\gamma_{\tilde{\omega},\omega}} - \lambda_{\gamma_{\tilde{\omega},\omega}} = 0$$

$$\Rightarrow \lambda_{\gamma_{\tilde{\omega},\omega}} p_{\tilde{\omega},\omega} = \underset{\mathbf{x}\in\mathcal{S}}{\mathbf{P}} p(\omega|\mathbf{x},\tilde{\omega})$$

$$\Rightarrow \lambda_{\gamma_{\tilde{\omega},\omega}} p_{\tilde{\omega},\omega} = \lambda_{\gamma_{\tilde{\omega},\omega}}$$

$$\Rightarrow \lambda_{\gamma_{\tilde{\omega},\omega}} p_{\tilde{\omega},\omega} = \lambda_{\gamma_{\tilde{\omega},\omega}}$$

$$\Rightarrow p_{\tilde{\omega}\in\Omega} p(\omega|\mathbf{x},\tilde{\omega})$$

$$\Rightarrow p_{\tilde{\omega}\in\Omega} p(\omega|\mathbf{x},\tilde{\omega})$$

$$\Rightarrow p_{\tilde{\omega}\in\Omega} p(\omega|\mathbf{x},\tilde{\omega})$$

$$\Rightarrow p_{\tilde{\omega},\omega} p_{\tilde{\omega},\omega} p_{\tilde{\omega},\omega}$$


$$\Rightarrow p_{\tilde{\omega}\in\Omega} p_{\tilde{\omega}} p_{\tilde{\omega},\omega}$$

$$\Rightarrow p_{\tilde{\omega}\in\Omega} p_{\tilde{\omega},\omega}$$

$$\Rightarrow p_{\tilde{\omega},\omega} p_{\tilde{\omega},\omega}$$

$$\Rightarrow p_{\tilde{\omega},\omega}$$

 $Q\omega$

$$L' - L = \frac{\mathbf{X}}{|\mathcal{S}|} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{|\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) , \quad \frac{p'(\mathbf{x} | \omega) p'(\omega | \psi(\mathbf{x}))}{p(\mathbf{x} | \omega) p(\omega | \psi(\mathbf{x}))} + \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{|\mathbf{x} \in \mathcal{S}|} \frac{\mathbf{X}}{\omega \in \Omega} q(\omega | \mathbf{x}, \psi(\mathbf{x})) , \quad \frac{q(\omega | \mathbf{x}, \psi(\mathbf{x}))}{q'(\omega | \mathbf{x}, \psi(\mathbf{x}))}.$$

$$(2)$$

$$I(q, q') = \frac{\mathbf{X}}{q(\omega|\mathbf{x}, \psi(\mathbf{x}))} q(\omega|\mathbf{x}, \psi(\mathbf{x})) + \frac{q(\omega|\mathbf{x}, \psi(\mathbf{x}))}{q'(\omega|\mathbf{x}, \psi(\mathbf{x}))} \ge 0,$$
(2)

$$L' - L \geq \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} \frac{\mathbf{X}}{\omega \in \Omega} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \quad , \quad \frac{p'(\mathbf{x} | \omega) p'(\omega | \psi(\mathbf{x}))}{p(\mathbf{x} | \omega) p(\omega | \psi(\mathbf{x}))} \quad . \tag{2}$$

$$L' - L \ge \frac{\mathbf{X}}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) + \frac{p'(\mathbf{x} | \omega)}{p(\mathbf{x} | \omega)} + \frac{\mathbf{X}}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) + \frac{p'(\omega | \psi(\mathbf{x}))}{p(\omega | \psi(\mathbf{x}))} \ge 0.$$

$$L' - L = \frac{X}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \frac{X}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \cdot \frac{p'(\mathbf{x}|\omega)}{p(\mathbf{x}|\omega)} + \frac{X}{\tilde{\omega} \in \Omega} \frac{|\mathcal{S}_{\tilde{\omega}}|}{|\mathcal{S}|} \frac{X}{\omega \in \Omega} \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{X}{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}} q(\omega | \mathbf{x}, \tilde{\omega}) \cdot \frac{p'(\omega|\tilde{\omega})}{p(\omega|\tilde{\omega})} \cdot \frac{\mathbf{A}}{\mathbf{A}} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{l} \mathbf{2} \cdot \mathbf{r}$$

$$p'(\omega|\tilde{\omega}) = \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{X}{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}} q(\omega|\mathbf{x}, \tilde{\omega}), \ \omega \in \Omega, \ \tilde{\omega} \in \Omega$$

$$p'(\cdot|\omega) = \mathbf{r} \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{X}{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}} q(\omega|\mathbf{x}, \psi(\mathbf{x})) \cdot p(\mathbf{x}|\omega)$$

$$p'(\cdot|\omega) = \mathbf{r} \frac{1}{|\mathcal{S}|} \frac{X}{\mathbf{x} \in \mathcal{S}} q(\omega|\mathbf{x}, \psi(\mathbf{x})) \cdot p(\mathbf{x}|\omega)$$

$$\omega \in \Omega,$$

$$\omega \in \Omega,$$

$$(2) \qquad \mathbf{r} \in \mathcal{X} \qquad \mathbf{r} \qquad \mathbf{r} \qquad \mathbf{r} \in \mathcal{X} \qquad \mathbf{r} \qquad \mathbf{r} \qquad \mathbf{r} \in \mathcal{X} \qquad \mathbf{r} \in \mathcal{X} \qquad \mathbf{r} \qquad \mathbf{r} \in \mathcal{X} \qquad \mathbf{r}$$

$$\frac{\mathbf{X}}{\omega \in \Omega} p'(\omega | \tilde{\omega}) \dots \frac{p'(\omega | \tilde{\omega})}{p(\omega | \tilde{\omega})} \ge 0, \, \tilde{\omega} \in \Omega, \qquad (0)$$

$$\frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \dots p'(\mathbf{x} | \omega)$$

$$\ge \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \dots p(\mathbf{x} | \omega), \, \omega \in \Omega,$$

$$\frac{1}{|\mathcal{S}|} \frac{X}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) + \frac{p'(\mathbf{x} | \omega)}{p(\mathbf{x} | \omega)} \ge 0, \omega \in \Omega. \tag{1}$$

2.1.1 Gaussian Classes with Noisy Labels

$$p(\mathbf{x}|\omega) = f(\mathbf{x}|\mathbf{\mu}_{\omega}, \mathbf{\Sigma}_{\omega}), \ \omega \in \Omega, \tag{2}$$

$$\omega \in \Omega$$
.

$$L_{\boldsymbol{\mu}} = \frac{1}{|\mathcal{S}|} \frac{X}{\boldsymbol{x} \in \mathcal{S}} \quad \text{if } f(\boldsymbol{x} | \boldsymbol{\mu}) \to \boldsymbol{x} \quad \Rightarrow \quad \hat{\boldsymbol{\mu}} = \frac{1}{|\mathcal{S}|} \frac{X}{\boldsymbol{x} \in \mathcal{S}} \boldsymbol{x}. \tag{(...)}$$

(2)
$$q(\mathbf{x}) = \frac{N(\mathbf{x})}{|\mathcal{S}|}, \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{X}} q(\mathbf{x}) = 1, (\mathbf{x} \notin \mathcal{S} \Rightarrow q(\mathbf{x}) = 0),$$

$$L_{\mu} = \frac{X}{\mathbf{x} \in \mathcal{X}} q(\mathbf{x}) \dots \mathbf{F}(\mathbf{x}|\mathbf{\mu}) \to \dots \Rightarrow \hat{\mu} = \frac{X}{\mathbf{x} \in \mathcal{X}} q(\mathbf{x}) \mathbf{x}.$$

$$(5)$$

... r. .

$$\mathbf{\mu}_{\omega}' = \frac{1}{\mathbf{x} \in \mathcal{S}} \frac{1}{q(\omega | \mathbf{x}, \psi(\mathbf{x}))} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \mathbf{x}, \qquad ()$$

$$\begin{split} \boldsymbol{\Sigma}_{\omega}' &= \mathbf{P} \frac{1}{\mathbf{x} \in \mathcal{S}} \frac{\mathbf{X}}{q(\omega | \mathbf{x}, \psi(\mathbf{x}))} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \mathbf{x} \mathbf{x}^{T} \\ &- \boldsymbol{\mu}_{\omega}' \boldsymbol{\mu}_{\omega}'^{T}, \quad \omega \in \Omega. \end{split}$$

..., ..., ..., ..., r..b, ..., r...r...

2.1.2 Class-conditional Gaussian Mixtures with Noisy Labels

 $m \in \mathcal{M}_{\omega}$

 \mathbf{r} $m \in \mathcal{M}_{\omega}$ \mathbf{r} $P(\mathbf{x}|\omega)...$ \mathbf{r} b

(1), ..., r., ..., r., ...

$$L = \frac{1}{|\mathcal{S}|} \mathbf{X} \mathbf{X} \mathbf{X} \sum_{\omega \in \Omega} p(\omega | \psi(\mathbf{x})) w_{m\omega} f(\mathbf{x} | \mathbf{\mu}_{m\omega}, \mathbf{\Sigma}_{m\omega}) .$$

 $h(m, \omega | \mathbf{x}, \psi(\mathbf{x}))$

$$= \mathbf{P} \underbrace{\mathbf{P}^{p(\omega|\psi(\mathbf{x}))w_{m\omega}f(\mathbf{x}|\mathbf{\mu}_{m\omega}, \mathbf{\Sigma}_{m\omega})}_{m \in \Omega} - \underbrace{\mathbf{P}^{p(\omega|\psi(\mathbf{x}))w_{m\omega}f(\mathbf{x}|\mathbf{\mu}_{m\omega}, \mathbf{\Sigma}_{m\omega})}_{m \in \mathcal{M}_{\omega}} p(\omega|\psi(\mathbf{x})) w_{m\omega}f(\mathbf{x}|\mathbf{\mu}_{m\omega})}_{m \in \mathcal{M}_{\omega}}$$

 \mathbf{r} \mathbf{r}

$$p'(\omega|\tilde{\omega}) = \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}} \frac{\mathbf{X}}{m \in \mathcal{M}_{\omega}} h(m, \omega|\mathbf{x}, \tilde{\omega}), \omega \in \Omega, \ \tilde{\omega} \in \Omega.$$
(()

$$w'_{m\omega} = \frac{1}{|\mathcal{S}|} \frac{X}{\mathbf{x} \in \mathcal{S}} h(m|\omega, \mathbf{x}, \psi(\mathbf{x}))$$

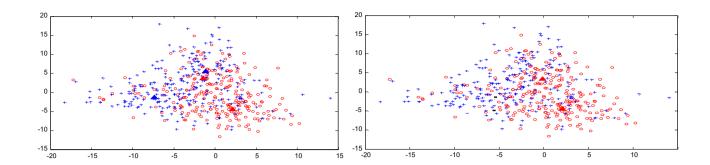
$$= \frac{1}{|\mathcal{S}|} \frac{X}{\mathbf{x} \in \mathcal{S}} \underbrace{\frac{h(m, \omega|\mathbf{x}, \psi(\mathbf{x}))}{m \in \mathcal{M}_{\omega} h(m, \omega|\mathbf{x}, \psi(\mathbf{x}))}}_{m \in \mathcal{M}_{\omega}} m \in \mathcal{M}_{\omega}, \omega \in \Omega,$$

$$(4.)$$

3 Related work

 \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} $rr,\;r \quad \dots \quad r_{>}\;r_{>} \quad r_{>} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad n_{b}\;r \quad r_{>}\;r$ $\ldots r \ldots r \ldots r \ldots r \ldots r \ldots r \ldots r$, , **r** .

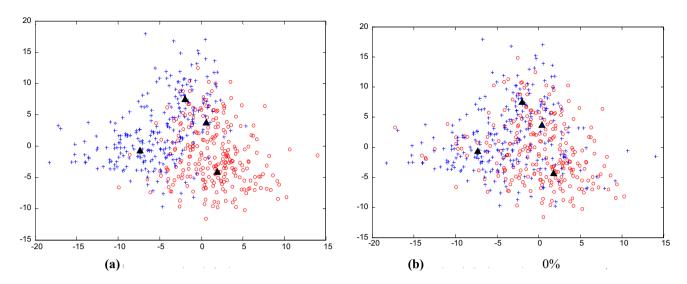
.. . , **r**, ..., **rr**, **r**, ..., ..., $\ldots , \quad b \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots$ $r_{\cdot,b},\ldots, r_{\cdot,c}, r_{\cdot,c},\ldots, r_{\cdot,c},\ldots,$b.-. r.b.., r.r. r.b.. \mathbf{r}_{a} , \mathbf{b} , \mathbf{r}_{a} , \mathbf{r}_{a} , \mathbf{r}_{a} , \mathbf{r}_{b} $\mathbf{r}_{i}\mathbf{r}_{i}$... \mathbf{r}_{i} ... $\ldots \ , \ r = \ldots \ , \qquad r_{c} \cup_b \cup_c \ , \qquad r = \ldots \cup_b .$ r ... r , ... $\ldots, r : r : r = \ldots, \ldots, \ldots = (b,\ldots, m,r,\ldots, m,r,$


	r r .			
			, -	
1	2000	0	5	
2	1000	2	2	
r	10			
•	1 ⁵ 0	,		
	1.	1		
, r	2	22	2	
	5 ₀	1	2	
r	5 000	21		

r , . . , r , . . , r , . . , . , . , b , . . , r , b , r , r.b,b.rb, .r.... $r_1, r_2, r_3, \dots, r_n, \dots, r_$ $\ldots \boldsymbol{r} = \boldsymbol{r} = \boldsymbol{r} + \boldsymbol{r}$ $r_{+}b_{+}\ldots = r_{+}\ldots = r_{+}$ $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{5},$.,.,., \mathbf{r} , ... \mathbf{r} , ... \mathbf{r} , ... \mathbf{r} , \mathbf{r}rbrr, r.r.b...,r.b. ..., r. \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} $..., r_{+}, \ldots, r_{+}, r_{+}, \ldots \ldots r_{+}, b_{+}, \ldots, \ldots, \ldots, \ldots, \ldots$

 $\mathbf{f}_{-r}, \ldots, \ldots, \mathbf{f}_{r-r}, \ldots, \mathbf{$ $\boldsymbol{r}_{+},\ldots,\ldots,\boldsymbol{r}_{m-1},\boldsymbol{r}_{m-1},\ldots,\ldots,\boldsymbol{r}_{m-1},\ldots,\ldots,\boldsymbol{r}_{m-1},\ldots,\ldots,\boldsymbol{r}_{m-1},\ldots,\boldsymbol{r}_{m-1},\ldots,\ldots,\boldsymbol{r}_{m-1}$ r , , r - r ...,, ..., ., .b.. ., ., ., ., ., ., ., ., ., ., . - r **r**., r r ... , r ... , r ... , r.... r...[1...

 \mathbf{A} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} ..., r ..., r ..., h ..., r ..., h ..., r ..., r. r . \mathbf{f} . r . . r \mathbf{f} . \mathbf{f} . \mathbf{f} . $\ \, ... \, r \, .b \, ... \, \ldots \, ...$ $\ldots b_{\ell-\ell-\ell-1} = r, \ldots = r, \ldots$ \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{b} \mathbf{b} \mathbf{c} $\dots b, \dots \dots b \quad \text{, } \quad r \quad \dots \dots r \quad \dots \quad r \quad \dots \dots$, , , , \mathbf{r} , , , . . . \mathbf{r} , , , , \mathbf{r} , r ...

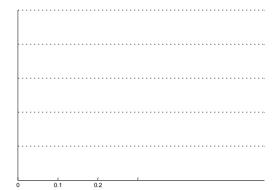


4 Experiments and discussion

4.1 Datasets and preprocessing

r , , , , , , , , , , b , , , , , r , , , , b , m , r , , , . , . , . . .

4.2 Results and discussion



	, , , , , r , r , b b .	,. , r., b.b.	, m, r r, . (%)				
. r ₁ 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[0, 0.5 00]	1 .00				
20% b. rr r	0. 2 ⁵ 0.21 ⁵ 0.1 0. 02	[0.5 101 0,]	12. 0				

 r
 b
 r
 0.5
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r
 r

rr, rr, b b. -. . r. b r. $\boldsymbol{m}_{\scriptscriptstyle{0}}$ r r . . , **r**, , , \mathbf{r} , ., **r**, **r**, $r = (-1, \dots, -1, b).$ Λ , , , , r, ..., r ... p **b**. , **r** . , ,

		, , , , , , , , , , , , , , , , , , ,						\mathbf{A} , , \mathbf{r} . \mathbf{b} \mathbf{r} .								
		0	0.1	0.2	0.	0,	0.5				0	0.1	0.2	0.	0,	0.5
1	A , ,	0.0	0.65	0.0 1	0.0	0.11	0.22	1	A,		0.0	0.0	0.05	0.1	0.211	0.221
	r. A	0.0^{5}	0.0	0.0	0.0^{5}	0.0^{5}	0.0^{5}		r.	A	0.0^{5}	0.0^{5}	0.0	0.0	0.0^{5}	0
	, А	0.005	0.003	0.003	0.003	0.030	0.003			A,	0.005	0.005	0.005	0.005	0.026	0.191
2	r,	0.1, 2	0.1	0.1	0.1 ,	0.5 Q	0.5 0	2	r,		0.1 2	0.1	0.1	0.1	0.1 2	_
	r	0.1	0.1	0.1	0.1	0.186	0.5 0		r		0.1	0.1	0.1, 2	0.1	0.2	_
	A ,	0.1, 2	0.1	0.1, 2	0.1 ,	0.22	0. 1		A,		0.1 2	0.1, 2	0.2	0,	0, . ,	_
	r. A	0.1	0.1	0.1	0.2	0.5 2	0.5^{5} 2		r.	A	0.1	0.128	0.1,	0.1,	0.1	0.504
	, A	0.128	0.120	0.126	0.166	0.1	0.182			A,	0.128	0.128	0.132	0.13	0.144	0.5 2
	A ,	0	0.	0. 1	0.5 2	0.5 1	0. 1	r	A,		0	0.	0.5	0. ,	0, 52	0.50
r	r. A	0.305	0, 0	0.357	0.5	0.5 Q	0.5 2		r.	A	0.305	0.238	0.2^{5}	0, .	0.5 2	0.5
	, A	0	0.238	0.357	0.357	0.500	0.504			A,	0.	0.2 1	0.214	0.25	0.404	0.415
, r	A ,	0.02	0.0^{5}	0.1	0.200	0.	0.2	, r	A,		0.02	0.01	0.1	0.1	0,	_
	r. A	0.02	0.0	0.033	0.0^{5}	0.100	0.08		r.	A	0.02	0.016	0.016	0.022	0.033	_
	, A	0.013	0.016	0.033	0.05	0.083	0.08			A,	0.013	0.016	0.016	0.022	0.033	_
	A ,	0.0	0.12	0.112	0.15	0.2	0. 0		A,		0.0	0.1 0	0.112	0.1	0, 0	_
	r. A	0.0	0.011	0.044	0.0	0.044	0.0		r.	A,	0.0	0.0^{5}	0.0^{5}	0.042	0.056	_
	, A	0.033	0.022	0.044	0.033	0.0^{5}	0.076			A,	0.033	0.042	0.042	0.042	0.056	_
r	r	0.5	0.5	0 1	0.	0.	0.5	r	r,		0.5	0, ,	0.	0.55	0. 00	_
	r	0.5	0. 5	0. 2	0.	0. 5	0.		r		0.5	0, 20	0, 11	0.	0 2	_
	A , ,	0.2. 0	0.261	0.2	0^{5}	0. 2	0.5		A,		0.2 0	0.2	0. 0.	0 2	0. 1	_
	r. A	0. 0	0. 2	0. 0	0.	0	0.		r.	A,	0. 0	0.	0.2 1	0.	0. 2	_
	, A ,	0.248	0.261	0.261	0.289	0.287	0.271			A,	0.248	0.261	0.261	0.261	0.327	_
	r,	0.130	0.1	0.12	0.1	0.	0.5 1		r,		0.130	0.163	0.173	0.178	0.1	0.
	r	0.130	0.183	0.113	0.1	0. 1	0.		r		0.130	0.163	0.1	0.1	0.1	0. ,
	A , ,	0.1	0.1^{5}	0.1	0.183	0.2 2	0.5		A,		0.1	0.1	0.2 2	0, 15	0, 5	0, 2
	r. A	0.2	0.1	0.1	0.1	0, 5	0. 1		r.	A ,	0.2	0.1	0.1	0.1	0, 5	0.2
	. A	0.205	0.183	0.1	0.183	0.188	0.185			A,	0.205	0.1	0.1	0.1	0.163	0.221
	A , ,	0.188	0.201	0.223	0.223	0.2 0	0. 12		A,		0.188	0.196	0.2	0.	0 0	_
. r ,	r. A	0.2	0.2	0.2	0.25 1	0.25 2	0.25	, t ,	r.	A	0.2	0.2	0.2 1	0, .	0.5 00	_
	, A ,	0.222	0.22	0.2 1	0.2 2	0.244	0.244			A,	0.222	0.22	0.226	0.280	0.296	_

, 20% ... b. rr r . r . r $m{r}$, $m{r}$, $m{r}$, $m{r}$, $m{r}$ r , . . , . . , . . , . . , . . , . . , . . . $\mathbf{A}_{1},\ldots,\mathbf{A}_{n},$

Table 5 / r /

		. / r . /, .	
		, , . r .	A , , . r .
1	Α,	0/0/	0/0/
	r. A	0/0/	0/0/
	, A	/0/0	/0/0
2	r,	0/0/	0/0/
	r	1/05	0/0/
	A . ,	0/0/	0/0/
	r. A	0/0/	1/1/
	, A	5 /0/1	, /1/1
r	A , ,	0/0/	0/0/
,	r. A	1/1/	2/0/
	, A	, /1/1	/0/2
, r	A , ,	0/0/	0/05
	r. A	0/ /	0/, /1
	, A	/ /0	1/, /0
	A , ,	0/0/	0/05
	r. A	1/2/	0/2/
	, A	/2/1	/2/0
r	r,	0/0/	0/05
	r	0/0/	0/05
	A , ,	0/15	0/05
	r. A	0/0/	0/05
	, A	5 /1/0	5 /0/0
	r,	1/1/	1/2/
	r	1/1/	1/2/
	A , ,	0/15	0/0/
	r. A	0/0/	0/0/
	, A	2/1/	2/0/
r	A , ,	, /0/2	2/0/
	r. A	0/0/	0/05
	, A	2/0/	/0/2

5 Experimental results on large-scale datasets

Ď ,000 200 $\ldots , \ \ b \ r \ \ldots \ r \ \ldots \ r \ \ldots \ \ldots \ b \ \ldots \ . \ r \ \ldots \ \ldots$..., , \mathbf{r} ., \mathbf{r} ., \mathbf{r} ., \mathbf{r} . r, r ..., \ldots ..., \ldots ..., rb., ..., r..., r..., r... ..., \mathbf{r} , \mathbf{r} . 0%, 10%, 20%, 0%, 0%, 5 0% $(\mathfrak{h}_{0}, \mathfrak{h}_{0}, (\mathfrak{gl}), (\mathfrak{gl}), \mathfrak{h}_{0}, (\mathfrak{gl}), \mathfrak{h}_{0}, \mathfrak{h}_{0}, \mathfrak{h}_{0}$ (162), 1..., **.r**., **r**., **r**., **r**., ... $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{5},$, r, , , , , (2), (12), , , (2), r, , , , r, , r, r, r-, r.

r., ...b 1.11,

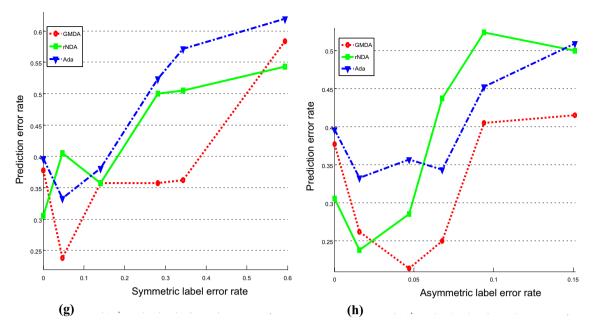


Fig. 6

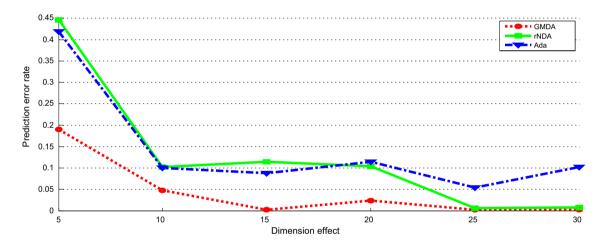
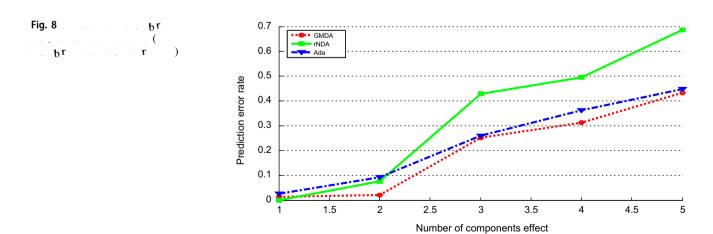
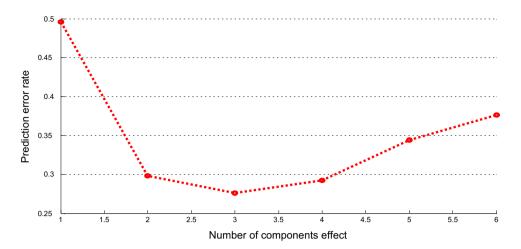




Fig. 7

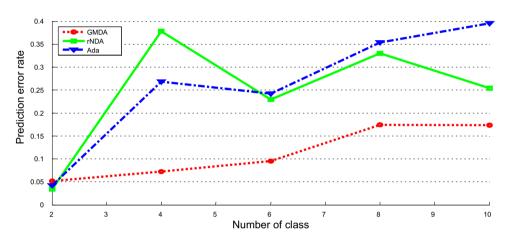


Table 6 $\dots r \dots r \dots \dots \dots r - \dots$

	$(\mathbf{r}_{+},\mathbf{r}_{+})$									
	N	D	r	r ,	, , .br , ,	1br 2				
1	ı ⁵ ,000	200	2 ⁵ 0	5	5, 2	., O				
2	5 ,000,	200	0	5	1	1				
	5,000	200	2 ⁵ 0	10	, ,	5				
	5,000	200	0	10	1	1				
5	5 ,000,	200	2 ⁵ 0		0.	. 2				
	5,000	200	0			20				

(.)

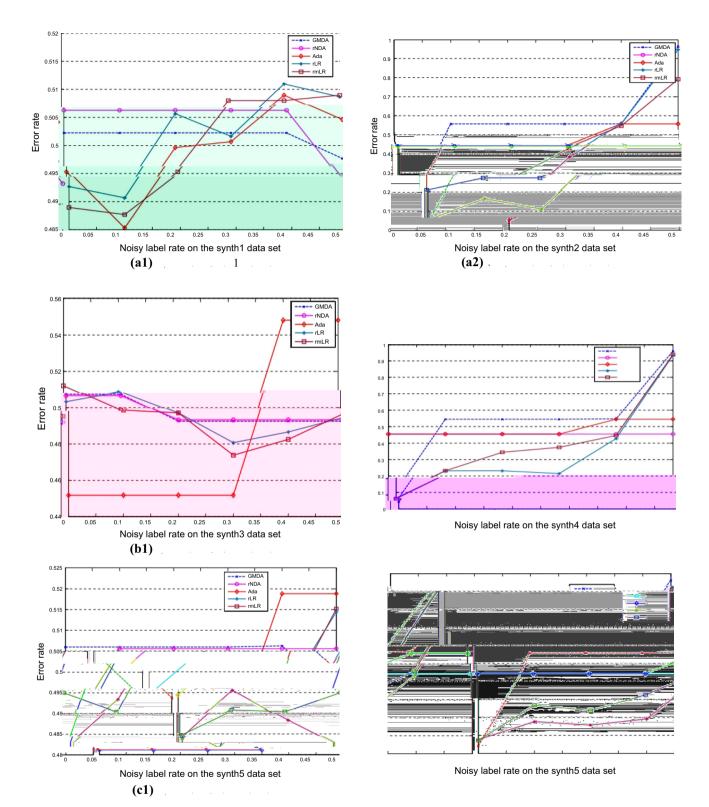

, **r**.

Table 7	-	r,		, r	
m rr.					
rr ,					
	r	r	-		

	<u> </u>					
	0.0	0.1	0.2	0.	0,	0.5
(a1) error	rate with 5-cross	-validation on co		dataset		
, A	0.5 02	0.5 02	0.5 02	0.5023	0.5023	0,
r A	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.4937
A . ,	0, 5	0.4853	0,	0.5 00	0.5 0 0	$0^{5} 0$
r	0, 2	0, . 0.	05 6	0.5 01	0.5 110	$0^{5} 0$
r,	0.4890	0,	0.4953	0.5 0 0	0.5 0 0	0.5 0 0
(b1) error	rate with 10-cros	s-validation on o	correlated synth.	3 dataset		
, A	0.5 0	0.5 0.	0, . 2.	0, . 2.	0, . 2.	0.4927
r. A	05 0	05 0	0, .	0, .	0, .	0, .
A ,	0.4520	0.4520	0.4520	0.4520	0.5 0	0.5
r	0.5 0	05 0	0,	0, 0.	0,	0,
r,	0.5 120	0,	0,	0, 0	0.4827	0,
(c1) error	rate with 3-cross	-validation on co	orrelated synth5	dataset		
, A ,	0.5 0 0	0.5 0 0	0.5 0 0	0.5 0 0	0.5 0 0	0.4938
r A	0,	0.5 65	0.5 65	0.5 65	0.5 65	0.5 65
A . ,	0.4812	0.4812	0.4812	0.4812	0.5 1	0.5 1
r	0,	0, 5	0,	0, 1	0,	0.5 1
r,	0,	0, . 0	0, 0	0, 50	0.4904	0.5 pt 2
(a2) error	rate with 5-cross			h2 dataset		
, A	0.55 0	$0^{55} \cdot 0$	$0^{55} 0$	0.55	0. , 0	0^{55} 0
r A	0, 2	0, , 2.	0, 2	0.4427	0.4427	0, , 2
A	0, , 2.	0, , 2	0, , 2	055	055	0, , 2
r	0.1653	0.1103	0.3853	055	0. ,	0.1653
r,	0.2 0	0.2 0	0, 0	0.5	0 20	0.2 0
(b2) error	rate with 10-cros		•			
, A	0.0420	0.5	0.5 5	0.5	05	0. 1
r A	0, 5 0	0, 5 0	0, 5 0	0, 5 0	0, 5 0	0.4560
A .	0, 5 0	0, 5 0	0, 5 0	0, 5 0	0.5	0.5
r	0.0	0.2313	0.2320	0.2133	0.4267	0. 5
r,	0.0 00	0.2 1	0. 5	0.	0, , .	0., 00
(c2) error	rate with 3-cross	-validation on ui		h6 dataset		
, A	0.0424	0^{55} 2	0.55 2	055 0	0^{5}	0. 2
r A	0, 22	0, 22	0, 22	0, 22	0, 22	0.4422
A .	0, 22	0, 22	0, 22	0, 22	055	0^{55}
r	0.0.5	0.1754	0.1562	0.1902	0.4370	0.2,
r,	0.0.0	0.2	0.2	0. 25	0, 5	0. 112

.b., r.r....r...b.

6 Conclusion

, r, r r r - r

r ., r

, r, . . . , r, b br r, , , , , , , , . . .

Acknowledgements r r rb ...,

Compliance with ethical standards

Conflict of interest ..., r..., ..., ..., r..., r..

References

- \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{A} (2010) \mathbf{A}

r, \mathbf{r} , \mathbf{A} $(1 \dots)$,

(200) r - r -

⁵ A _b... J, . . . , . A (2010) . . , . .

2010, . . , . , . , . , . , . , . 2 . 25

1 11.01 55 1,201

b г , , r , л J (2001)

..., r., r. J, ..., A. (2012) ..., b. -. 2012, r ..., 1 - P , 2012

- \mathbf{r} , \mathbf{r} , \mathbf{f} (200.) . r . , r .b.b . . , r , . . . r 0(12)
- , r (2010) () 2 . .
- (201^5) . r. . .b . r r . . . r
- (2015)..., AAA ,
- (201)

...r ,... ,... (201) ... , , . **r** . , . $\mathbf{r} = \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} = 1 \cdot 0 \cdot .120$

1 , . . . , . . . (201) \mathbf{r}

- 22() 1...
- (2012). . **r**
- .. r (2001) r = 2() 2
- (2000), . . r
- r . . . , J (201) . r f. . . . f. . , , , . f. . , . . ,
- (1, x,) \mathbf{r}_{i} , \mathbf{r}_{i} , \mathbf{r}_{i} , \mathbf{r}_{i} , \mathbf{r}_{i}
- \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} r . (1) 1 r (1) 1
- ,) 1 () 1, , 1, 0

- r ,... A ... -... , . r (201)

 r ,... r b r r r ... r .
- 2. , , , J, , J, (201). r ь. **r** 1 0 .0 1, 201

- 2 r r 2012) r 2012 2 r r r 2012 br, ..., (2012) r , 2012 ..., (2012) r , br
- r , r , r , r , r , r , r , r , r , r , r , r , r , rr, A,...,
 (1.5) r, r, r, r, r, ...,
 r r, r, r, r, r, r, r, ...,
 , J (200) r, r, r, r, r, ...

- r., r. r . . . 1 (10) 1 1 2
- $\mathbf{r}_{1} \dots \mathbf{J}_{n} \dots \mathbf{b}_{n} \mathbf{A}$ (2012), $\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{b}_{3} \dots \mathbf{r}_{n} \mathbf{r}_{n}$ r, r 2012, , **r** , **J** . r,

,) ...,

..., .b, ., $r=rr,\,r$.,, , , r215) 1 0

(200) . r . , b.

, ... (201,) b. ... b. ... r-

- (201⁵)A r. r . r . r . r . r . . r . . .

 $(20\overset{5}{1})$ r_1 , r_2

...**b**. .. **r** _ 1 0 .021 0 1

(201) , r, r, ..., r

Publisher's Note of room room room room room room

