Knowledge and Information Systems (2020) 62:1279-1312
https://doi.org/10.1007/s10115-019-01382-x

1 Introduction

Infor mation technolog i almote e_{r}, he e in or dail life, ${ }_{r}$, hich collect a io infor mation fiom diffe: ent digital de ice [4,10]. S eciall, the location-ba ed tem ba ed on mobile de ice, ch a GPS, mobile hone, and nea -field comm nicaiion (NFC)te: minal , gene ate la ge amo ni of trajector ie of mo ing object. U . all, each indi id al tem
e it ni e $I D$ code to identif each traject α. For ex. am le, a mobile hone net $\alpha ; k$ identifie ats ajecto b it tele hone n mbe, ${ }_{5}$, hile an NFC temidentifie it b it de iceid. Since m lii le tem ma ca t. sea ame mo ing object at differ ent time and lace, each tem gathe: the object atialt ajecto ie. Reco ei ing a complete trajectory of a mo ing object fom one atialtajecto ie collected in a io lem, named trajectory splicing, i e ential for man a lication, ch a anomal beha io detection [21,22], data f ion, and t ajecto data mining [46]. The follof ing ca e $h q_{5} n$ in Fig. 1 elabo ate ts ajector licing.
 in Fig. 1. Thei mo ement gene ate iv. atial trajector ie: W1, S1, O1, W2, S2, and O2,
 S1 and S2; the office check-in tem ca 1 , e O 1 and O2. Thei com letetrajector ie can beseco ex ed ba ed on atiotem or allocation of the e atialtajectorie. Fox exam le, S2 i moe likel to lice ${ }_{\mathrm{V}}$ ith W2 than W1, beca e end oint atial o ition of S2 a e clo e: to tho e of W2, and the time inte: al of S2 [8:23,9:14] can be embedded into the time ga of W2 (8:20, 9:16). Simila 1, O2 can lice ${ }_{\hbar}$ ith W2. So, connecting W2, S2, and O2 can se ai Bob ${ }_{\text {s }}$ hole trajecto.

Acco ding to the abo e ca e, finding a goo of liceable trajectorie m atif the follof ing thee ce. is ement. The fis it the disjoint time constraint that se ise that time inte: al of liceabletrajectorie in the go. ho ld noto eala ${ }_{f}$ itheach othe: The econd i the spatial constraint that ee, ise that the di tance bet een thei end oint ho ld be near b ith each othe. The thi $d i$ the maximal group constraint that e . is e that the go. of liceable tr ajectorie ho ld be marimal and ho ld not be contained b othe: go. That mean connecting a man liceabletrajectorie a o ibletoseco e: a com letetrajecto.
Ho_{F} e es, it i non-ti i ial to find liceable trajectorie to ati f the abo e con traint q_{5} ing to the follof ing the challenge. The fir t challenge i that the coce of finding trajector ie that atif the di joint time con traint i e: time-con ming. The soce incl de t_{5} o te : e ing b-trajecto ie in alltime ga of atrajecto and co nting the n mbe: of b-trajector ie that belong to the ametrajecto: . For ex.am le, in Fig. 1, W2 ha the ee time ga : $(-\infty$

Fig. 1 The ca e of is aject α licing

hich connect otrajecto ie ithot. ing other liceable trajectorie. The othe: ithe
 ex. am le, in Fig. 1, W2 and S2 a e connecied die ecil , hile W2 and O2 a e connecied b S2. The indis ect lice make the soce of licingt ajectorie com licated beca eit need to find othe: tr ajector ie to dete: mine ${ }_{k}$, hethe: the t_{k} ot ajector ie can be connected α not. To
 cl te: ing $[24,25]$ cannot find g o. of liceabletrajectorie, beca ethe di co e: go. of trajecto ie acco ding to the imila it bet een them ather than the elation of dis ect (indir ect) lice. Altho gh f. is ajecto linking [38] i clo e to the challenge, it can onl find $t_{\text {r }}$ o disect licetrajectorie and inot itable for mining m lii letrajector ie that ase the dix ect or indir ect lice.

The this d challenge ithat it m find a man liceable t ajecto ie of a mo ing object a o ible. In gener al, if a method ${ }_{n}$ ant to ac iseago of liceable trajecto ie hich a e not contained bothe go. it need tota a e all o ible combination of liceable ts ajectar ie for a mo ing object. For ex.am le, in the abo e ca e,toseco e: Bob tiajecto, the e goo, ch a $\{W 2, S 2\},\{W 2, O 2\},\{S 2, O 2\}$, and $\{W 2, S 2, O 2\}, m \quad 1$ betsa ee ed. Namel, it need to find a go of liceable trajectorie hich mot com act fill a
ecific atiotem α alcange. So, it i abin- acking soblem and i NP-had [23]. The de ign of an a cos.imation cheme α he sitic method ithe ke to deal ${ }_{k}$ ith the soblem.

In α de: to deal ${ }_{⺊}$ ith the abo e challenge, a liced model i defined to for mali e the abo ese. isement of liceable t ajectorie. Ba ed on the liced model, t ajector ie ace egmented into b-trajecto ie accor ding to a eeditre hold. A $B^{+}-t$ ee [7] i edio a e the e b-ti ajectorie. For eeding the soce of finding di joint time et, the inder of di joint time called DT-index i con t . cted to kee intemediate e . lt of eaching the di joint time et in eachtime lice. Mos eo e, the DT-indes. i am lit \leftarrow e ol tion tr. ct. selike a adtsee and can a e inter mediatese of time lice ${ }_{5}$ ith diffe ent length, oting ei ie ${ }_{f}$ ith differ ent time inte: al For ex am le, a ming that the DT-index con it of inte: mediate se. lt of one, $\mathrm{t}_{\mathrm{s}} \mathrm{o}$, and fo s da , if a e: time inter al i 4.5 da , the DT-inder. can find di joint time et f ithin the fos da , and the B^{+}-ts ee can find di joint time et r ihin the 0.5 da . Ba ed on the abo e t_{r} o index.e, an algo: iihm $\boldsymbol{e} \boldsymbol{D T} \boldsymbol{T} \boldsymbol{T R}$ i so o ed to oblain all di joint time et $\underset{f}{ }$ ithin a ecific time inte: al.

In α de: to find liceable t ajector ie, a dis ected ac clic g a h of b-trajector location connection called STLC-DAG i a eated to connect b-tiajectorie b thei time and location. Once the algo ithm \boldsymbol{c} ea eSTLC-DAG ha c eated the g a h, it can obtain the liceable et of t ajector ie that can lice ${ }_{\kappa}$ ith a ecific trajecto. For exam le, in the abo e ca e, the algo: ithm can find S2 liceable et \{W2\}, W2 \{S2, O2\}, and O2 \{W2\}. Mos eo es, the e liceable et for m a splice graph, ${ }_{\text {the }}$ e each node i atrajecto, and the edge bet een t_{f} o node se se ent that the t_{v} ots ajecto ie a e liceable. For in tance, the node S 2 ha one edge ${ }_{v}$. hich connect the node W 2 , and W 2 ha edge ${ }_{\mathrm{w}}$ hich connect S 2 and O 2 . Th , in the lice gah, a cli e i a go of liceable trajectorie. Fo adde ing the this d challenge, an algoxithm $\quad \boldsymbol{d M a} \boldsymbol{C T R}$ i so o ed to find all max.imal

Table 1 Notation

Notation	Definition
Ω	A $T R$ databa e
p	A am le oint $\langle i d, l c, t\rangle$
$T R_{i}$	The i ih $T R$ in Ω
$D T_{i}$	A $T R_{i}$ di joint time et
$S P_{i}$	A et of $T R$ that can be liced ${ }_{v}$ ith $T R_{i}$
STR ${ }_{i}^{j}$	The j th b-tr ajecto of i ih $T R$
T	The time inte: al of e:
N	The n mber of $T R$ in T
M	The n mbe: of all $S T R$ in T
CTR	A com letetrajecto con it of liceable $T R$
$f s t(S)$	Ret. ¢ n the fi: t element in e ence S
$l s t(S)$	Ret. $¢ \mathrm{n}$ the lat element in e ence S
$d(p, q)$	The E clidean di tance betis , en t_{5} O am le oint p and q
$d\left(\operatorname{STR}_{i}^{j}, \operatorname{STR}_{m}^{n}\right)$	The E clidean di tance beis een i_{5} o $S T R$
$t i(S T R)$	The time inte: al of a b-ts ajecto STR
$t i\left(T R_{i}\right)$	The time inte: al et of trajecto $\quad T R_{i}$
$\operatorname{gap}\left(\operatorname{STR}_{i}^{j}, \operatorname{STR}_{m}^{n}\right)$	The ga beif een i_{5} o b-trajecto ie
$\operatorname{gap}\left(T R_{i}\right)$	The ga et of $t i\left(T R_{i}\right)$

mo ing object: $C T R_{1}=\left\{T R_{A}, T R_{B}, T R_{C}\right\},{ }_{k}$, hich incl de the \mathfrak{t} ajecto: ie ${ }_{v}$ ith identifie: A, B, and C, and $C T R_{2}=\left\{T R_{D}, T R_{E}\right\},_{w}$ hich incl de the \mathfrak{t} ajecto ie ${ }_{w}$ ith identifie: D and E.

In at ajecto, $\mathrm{t}_{\mathrm{s}} \mathrm{o}$ am le oint, p_{i} and p_{i+1}, a e connectable if $\operatorname{speed}\left(p_{i}, p_{i+1}\right) \geq e$, whe e e i a eedithe hold and

$$
\begin{equation*}
\operatorname{speed}\left(p_{i}, p_{i+1}\right)=\frac{d\left(p_{i}, p_{i+1}\right)}{\left|p_{i+1} . t-p_{i} . t\right|} \tag{1}
\end{equation*}
$$

W_{5} he: $\mathrm{e} d\left(p_{i}, p_{i+1}\right)$ el $\& \mathrm{n}$ the E clidean di tance bet ,en am le oint p_{i} and p_{i+1}. Gi en a e ence of am le oint in a trajecto $T R_{i}$, if an $t_{\text {o con ec ti e am le oint in }}$ the e . ence a e connectable, the e ence i connectable in that it h_{F} one contin o. mo ement. Mo eo es, if othe: connectable e ence do not contain a connectable e ence, the connectable e ence i called sub-trajectory (denoted a STR). In atic la, e e $S T R_{i}$ to denote the j th b-ts ajecto in trajecto $T R_{i}$. Fo: a. am le, trajecto $T R_{A}$ in Fig. 2 ha 4 b-ir ajecto ie: $S T R_{A}^{1}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, S T R_{A}^{2}=\left\langle a_{4}, a_{5}\right\rangle, S T R_{A}^{3}=\left\langle a_{6}\right\rangle$, and $S_{T R}^{4}=\left\langle a_{7}, a_{8}, a_{9}\right\rangle$. A. b-tr ajecto i the atomic com tational nit inthi a e: .

The time interval of the b-t ajecto , denoted a i(STR), i [first(STR).t, last (STR).t], he: ethe f. nction first (\cdot) and $\operatorname{last}(\cdot)$ et $\&$ nthe fic t and la t am le oint inthe b-ts ajecto $S T R$, se ecti el. The time interval of the trajecto i the et of time inte: al of all it
b-tr ajector ie, denoted a $\boldsymbol{i}\left(\boldsymbol{T R}_{\boldsymbol{i}}\right)=\bigcup_{S T R_{i}^{j} \in T R_{i}} t i\left(S T R_{i}^{j}\right)$.
The gap belf een \mathbb{L}_{k} o b-trajecto ie $S T R_{i}^{j}$ and $S T R_{m}^{n}$, denoted a $\operatorname{gap}\left(S T R_{i}^{j}, S T R_{m}^{n}\right)$, i defined b E. 2.

$$
\begin{equation*}
\operatorname{gap}\left(S T R_{i}^{j}, S T R_{m}^{n}\right)=\left(\operatorname{last}\left(S T R_{i}^{j}\right) \cdot t, \text { first }\left(S T R_{m}^{n}\right) \cdot t\right) \tag{2}
\end{equation*}
$$

Mo: eo e , ihe gap of t ajecto: $T R_{i}$ in the time inte: al T, denoted a $g \boldsymbol{a}\left(\boldsymbol{T R}_{\boldsymbol{i}}\right)$, i defined b E. 3 .

$$
\begin{equation*}
\operatorname{gap}\left(T R_{i}\right)=T-t i\left(T R_{i}\right)=T-\bigcup_{S T R_{i}^{j} \in T R_{i}} t i\left(S T R_{i}^{j}\right) \tag{3}
\end{equation*}
$$

For ex.am le, the time inte: al of t ajecto: $T R_{A}$, denoted a $t i\left(T R_{A}\right)$, i $\left\{\left[t_{1}, t_{2}\right],\left[t_{3}, t_{4}\right]\right.$, $\left.\left[t_{5}, t_{5}\right],\left[t_{6}, t_{7}\right]\right\}$. Gi en $T=\left[t_{0}, t_{8}\right],{ }_{k}$, ha e $\operatorname{gap}\left(T R_{A}\right)=\left\{\left(t_{0}, t_{1}\right),\left(t_{2}, t_{3}\right),\left(t_{4}, t_{5}\right),\left(t_{5}, t_{6}\right),\left(t_{7}\right.\right.$, $\left.t_{8}\right)$ \}.

2.2 Spliceable trajectories

If t_{k} o trajecto ie $T R_{i}$ and $T R_{j}$ can be liced into a com lete trajector, the m i meet the disjoint time constraint that se is that thei inte: al time ho ld not o e: la each othe: , namel $t i\left(T R_{i}\right) \subset \operatorname{gap}\left(T R_{j}\right)$. Gi en atr ajector $T R_{i}$, all the tr ajector ie that meet the di joint time con $\mathfrak{t r}$ aint ${ }_{k}$ ihh $T R_{i}$ con tiit te the disjoint time set of $T R_{i}$, denoted a $D T_{i}$. In Fig. 2, ince $t i\left(T R_{B}\right) \subset \operatorname{gap}\left(T R_{A}\right)$ and $t i\left(T R_{C}\right) \subset \operatorname{gap}\left(T R_{A}\right)_{N_{N}}$ e ha e $D T_{A}=\left\{T R_{B}, T R_{C}\right\}$.

In addition to the afor ementioned tem α al con \mathfrak{t} aint, if $T R_{i}$ and $T R_{j}$ as e liceable, the $\mathrm{m} t$ al o meet the spatial constraint, meaning that the b-tr ajector ie fom $T R_{i}$ and $T R_{j}$ m t be clo e eno gh to each othe: To for mall define the atial con t aint, , ints od ce t_{5} o conce t iceabe ai and iceabe aec ie.
 and a di tance the hold γ, if the do not o e: la each othe: on the time dimen ion and
the di tance bet een them i le than γ^{1}, the \mathbb{L}_{s} o b-trajecto ie $S T R_{i}^{j}$ and $S T R_{m}^{n}$ form a iceab eai, denoted a $\left\langle S T R_{i}^{j}, S T R_{m}^{n}\right\rangle$.

Definition 2 Gi en ome $\mathfrak{t r a j e c t o}$ ie, if the b-trajectorie in the gi en \mathfrak{t} ajectorie can con tit te a b-trajecto e ence $\left\langle S T R_{i}^{j}, \ldots, S T R_{m}^{n}\right\rangle$ ch that an o neighbo btrajectorie aea liceable ar, the etrajectorie aecalled iceabe a ec ie.

Ba ed on the abo et o definition ${ }_{1}$ e fir t ints od ce the conce $t \quad \boldsymbol{c} \quad \boldsymbol{e} \boldsymbol{e} \quad \boldsymbol{a} \boldsymbol{e c}$ to form late the marimalgo con t aint, hichse ise that the go of liceable trajecto ie ho ld not be contained b othe: go. . Then, e define the ice deg ee to antif the com lete tr ajecto: .

Definition 3 If othe: go. of liceable trajecto ie do not contain ago of liceable ts ajector ie, the go. for m a complete trajectory, denoted a CTR.

Definition 4 The ice deg ee, ${ }_{t}$, hich con $i t$ of t_{k} ofacto: the s atio of the m of the di tance bet een diffee ent tajecto ie to the di tance of $C T R$ and the \leqslant atio of the m of time ga tothetime inte: al of $C T R$, i . edto antif the com actne le elof connection bet. een t ajector ie in a $C T R$, defined b E. 4 .

$$
\begin{align*}
\operatorname{dg}(C T R)= & \frac{\sum_{\left\langle S T R_{i}^{j}, S T R_{m}^{n}\right\rangle \in C T R} d\left(S T R_{i}^{j}, S T R_{m}^{n}\right)}{\operatorname{distance}(C T R)} \\
& \times \frac{\sum_{\left\langle S T R_{i}^{j}, S T R_{m}^{n}\right\rangle \in C T R} \operatorname{gap}\left(S T R_{i}^{j}, S T R_{m}^{n}\right)}{\operatorname{time}(C T R)} \tag{4}
\end{align*}
$$

W. he: $\left\langle S T R_{i}^{j}, S T R_{m}^{n}\right\rangle$ i a spliceable pair in the $C T R ; d\left(S T R_{i}^{j}, S T R_{m}^{n}\right)$ i the di tance bet , een \mathbb{L}_{k} o b-trajecto ie $S T R_{i}^{j}$ and $S T R_{m}^{n}$; distance $(C T R)$ i the m of di tance bet. een t_{s} o con ec ti e am le oint in $C T R$, namel distance $(C T R)=\sum_{p_{i} \in C T R} d\left(p_{i}, p_{i+1}\right)$, in ${ }_{i}$ hich p_{i} and p_{i+1} ae t_{v} o con ec ti e am le oint in the CTR; time $(C T R)=\operatorname{last}(C T R) . t-$ first(CTR).t.

Ba ed on the definition, $d g(C T R) \in(0,1)$ and the malle: the lice deg ee $d g(C T R)$, ihe clo e: ti ajector ie in the com letetr ajecto: $C T R$. For exam le, in Fig. 2, a ming that the di tance facto: in Alice and Bob a ethe ame al e $0.02, d g$ (Alice) $=0.02 \times(((8: 27-8$: $25)+(9: 00-8: 52)+(9: 13-9: 10)) /(9: 13-8: 15)) \approx 0.0448$, and $d g(\mathrm{Bob})=$ $0.02 \times((8: 23-8: 20)+(9: 16-9: 14)+(9: 23-9: 21) /(9: 23-8: 00)) \approx 0.0017$. So, d e to $d g(\mathrm{Bob})<d g$ (Alice), the com letetrajecto of Bob i bette: than that of Alice.

2.3 Problem definition

Acco ding to the abo e definition, , form late the soblem of t ajecto licing b the it ajecto licing e: .

Definition 5 Fs om a daia el of trajector ie, acco ding to a es time inter al, the a ec
ici $\boldsymbol{g} \quad \boldsymbol{e}$ di co e: a com letetr ajecto e ence $C T R S=\left\langle C T R_{1}, \ldots, C T R_{n}\right\rangle_{\text {, }}$ he: e each com lete is ajecto: CTR i canked b it splice degree.

[^0]

3.1.2 The disjoint time index

(1) $C \quad i g d i \quad i \quad i \quad e$

To \quad at finding the disjoint time set $D T_{i}$ of each tr ajecto: $T R_{i}$ in the diffes ent time inte: al, ${ }_{c}$ efic atition the time dimen ion intotime lice that ha ethe ame lengit d, e.g., an ho $\leqslant \alpha$ a da. Then, secom te $D T_{i}$ in e es time lice, denoted a $D T_{i}^{k, d}$, he e ethe
e: c:it k and d se se ent the time inte: al $[(k-1) \times d, k \times d]$. Fo: exam le, a $h q_{5} n$ in Fig. 2, in the fis time lice $[0, \mathrm{~d}], D T_{A}^{0, d}=\{B, C, D\} \mathrm{b}$ eac ching tr ajector ie that meet the di joint time con ti aint (Sect. 2.2) in the abo e B^{+}-tree.
$\mathrm{Ho}_{\mathrm{E}} \mathrm{e} \mathrm{e}$, a ming the e: time inte: al T that contain n time lice, ${ }_{\mathrm{v}}$ e cannot en se to oblain the correct di joint time et $D T_{i}$ in T onl ith the inte: ection of $D T_{i}^{k, d}$ on the e n time lice. Thi i beca e am le oint in atrajecto $T R_{j}$ ma not a ea in a time lice o that $D T_{i}^{k, d}$ on the time lice doe not contain the trajecto $T R_{j}$. For ब. am le, in Fig. 2, ince the tr ajecto $T R_{E}$ doe not a ea in $[2 d, 3 d], D T_{D}^{3, d}=\phi$ and $D T_{D}=D T_{D}^{1, d} \cap D T_{D}^{2, d} \cap D T_{D}^{3, d}=\phi$. B. i, ob io. $1 D T_{D}=\{E\}$ in $[0,3 d]$.

In α de: to o es come the abo e fa li, the secom tation $D F_{i}$ of each t ajector $T R_{i}$ in an time lice need to be exec ted b E. 5 .

$$
\begin{equation*}
D F_{i}^{n+1, d}=\neg D T_{i}^{n+1, d}-\neg D T_{i}^{n, d} \tag{5}
\end{equation*}
$$

k. he: $\mathrm{e} \neg D T_{i}^{k, d}=P_{i}^{k, d}-D T_{i}^{k, d} ; P_{i}^{k, d}$ i a et ${ }_{k}$ hich contain allt ajecto ie that a ea inthe k thtime lice ex.ce thetrajecto: $T R_{i}$. Fox ex.am le, in Fig. $2, P_{A}^{1, d}=P_{A}^{2, d}=\{B, C, D, E\}$ and $P_{A}^{3, d}=\{B, C\}$. And, $\neg D T_{A}^{1, d}=\{B, C, D, E\}-\{B, C, D\}=\{E\}, \neg D T_{A}^{2, d}=\{D, E\}$ and $\neg D T_{A}^{3, d}=\phi$. Then, $D F_{A}^{2, d}=\{D\}$, and $D F_{A}^{3, d}=\phi$, a ho n in Fig. 4 .

With $D T_{i}^{k, d}$ and $D F_{i}^{k, d}$ on each time lice, the di joint time et $D T_{i}$ of eachts ajecto $T R_{i}$ in the e: time inte: al T can be com ted b E. 6 (The soof in A endix. A).

$$
\begin{equation*}
D T_{i}(T)=P_{i}-\left[\left(P_{i}-D T_{i}^{1, d}\right) \cup D F_{i}^{2, d} \cup \ldots \cup D F_{i}^{n, d}\right] \tag{6}
\end{equation*}
$$

$W^{\text {he: }} \mathrm{e}|T|=n \times d$, d i the length of the time lice, n se e ent the nth time lice, and P_{i} i a et hich contain all \mathfrak{t} ajector ie that a ea in T ex.ce 1 the $\mathfrak{t r}$ ajecto $T R_{i}$. Fo ex. am le, in Fig. 4 , if $T=[0,3 d], D T_{D}(T)=P_{D}^{0,3 d}-\left[\left(P_{D}^{0,3 d}-D T_{D}^{1, d}\right) \cup D F_{D}^{2, d} \cup D F_{D}^{3, d}\right]=$ $\{A, B, C, E\}-[(\{A, B, C, E\}-\{E\}]) \cup\{A\} \cup \phi]=\{E\}$.

If T i too long, the eaceman time lice in T, and $E .6$ contain man niono eation of $D F$ o that the com tation of E. 6 i time-con ming. To alle iate the it ation, e atition the time dimen ion into m lii le le el of time lice. Fo in tance, one le el of time lice i a da, and anothe: le el i a_{v} eek α month. So, if $|T|$ i one month, E . 6 can be com ted b onl one $D F$ on the month le el of time lice sathe: than b abo it 30 DF on the da le el.
(2) The \quad e fdi $i \quad i \quad e i d e$

Ba ed on the abo e anal i, ${ }_{\mathrm{r}}$ e de ign the di joint time inder. (called $\boldsymbol{D} \boldsymbol{T}$-inde. $)_{\mathrm{v}}$, hich incl de a $D T$-tree and a $D F$-tree that a e the di joint time et $D T$ of each trajecto and it secom tation $D F$ on diffes ent le el of time lice, se ecti el, a hof n in Fig. 4. The t_{s} otsee ha ethe ame $\mathfrak{t c}$ cl ce. The $D T$-tree ($D F$-tree) con it of a inglesoot node, leaf node, and non-s ool, non-leaf node. The detailed data \mathfrak{t}. cl se of the e node a a a follq.
$\boldsymbol{A} \quad \boldsymbol{d e},{ }_{\text {wh }}$ hich ma ha em lii le child en, a e their $I D$. A $I D$ i both atime inte: al and a filename, ${ }_{k}$, hen ing a time inte: al T, it child en and thei file a e located ickl.

A eaf de tox ais of $\left\langle i, D T_{i}\right\rangle$ o: $\left\langle i, D F_{i}\right\rangle$ in a ecifictime lice. Fox ax am le, in Fig. 4, $D T^{3, d}$ seco: d ais $\langle A,\{B, C\}\rangle,\langle B,\{A, C\}\rangle$ and $\langle C,\{A, B\}\rangle$.
$\boldsymbol{A} \quad$ - , -eaf $\boldsymbol{d e}$ onl ha t_{t} o child en. It to e it childen $I D$ and ais of $\left\langle i, D T_{i}\right\rangle \propto\left\langle i, D F_{i}\right\rangle,{ }_{k}$ he: e $D T_{i}$ o $D F_{i}$ can be com ted b E. 6 a 5 , se ecti el.

3.2 Processing query

With he B^{+}-tree andihe $D T$-index,,$_{k}$ e im lement an algax ithm Query $D T s T R_{k}$ hich ickl find the di joint time et $D T$ of each ts ajecto and all b-trajectorie (denoted a STRSet) in atime inte al T, a $\mathrm{ho}_{\mathrm{s}} \mathrm{n}$ in Algoc ithm 1.

```
Algorithm 1: queryDTsTR
    Input: \(B^{+}\)-tree, DT-Index, \(T\)
    Output: \(D T(T)\), STRSet
    \(\operatorname{STRSet}, D T\left(T_{1}\right), R\left(T_{1}\right), R\left(T_{2}\right), P=r e a d s T R\left(B^{+}{ }_{\text {-tree }}, T\right)\);
    \(D T\left(T_{2}\right)=\) Equation 7 ;
    \(D T=\left(D T(T 1) \cup R\left(T_{1}\right)\right) \cap\left(D T(T 2) \cup R\left(T_{2}\right)\right) ;\)
    \& et \(\leqslant \mathrm{n}\) DT,STRSet ;
```

The e time inte: al T con it of t_{o} o at: One i a et of t_{o} otime inter al itho i an time lice in the $D T$-index, denoted a $T_{1}=\left\{t_{1}, t_{2}\right\}$; the othe: i the time inte: al that contain n time lice inthe $D T$-index, denoteda T_{2}. Fox ex.am le, gi en $T=[8: 3511: 25]$ and the minimal time lice i an ho $s, T_{1}=\{[8: 359: 00]$, $[11: 0011: 25]\}$, and $T_{2}=[9: 0011: 00]$. With the B^{+}-tree, it i ea to find all trajecto ie P and thei bis ajecto ie STRSet in T. Mean, hile, ea ching the e b-t ajecto ie can obtain atr ajecto et $R\left(T_{1}\right)_{\text {v }}$ he e each is ajecto a ea in T_{1} bit not in T_{2}, ats ajecto el $R\left(T_{2}\right)_{\text {w }}$ he: e each tr ajector a ea in T_{2} bit not in T_{1}, and a di joint time el $D T\left(T_{1}\right)$ in the at T_{1}. The f nction readSTR at Line 1 im lement the abo e soce. Then, ${ }_{\text {w }}$ ith the $D T$-index., the code at Line 2 com . te the di joint time et $D T\left(T_{2}\right)$ b E. 7. At la t , the code at Line 3 get the di joint time et $D T$ in T.

The algo ithm cans. n es fat ba ed onthe follq ing \mathbb{L}_{5} os ea on. One i that, in genes al,
 (STR) in T_{1}. Hence, finding the di joint time et $D T\left(T_{1}\right)$ i fa t. The othe: i that, ince the di joint time el $D T$ of each t ajecto ha been a ed ba ed on m lii le time cale in the $D T$-inder, onl a mall amo nt of node need to be ea ched f om the inder in α de: to com te the di joint time et $D T\left(T_{2}\right)$ b E. 7 . So, finding $D T\left(T_{2}\right)$ i al ofat.

3.3 Splicing trajectory

3.3.1 Finding spliceable trajectories

We de ign an algo ithm createSTL-DAG to di co e: liceable tr ajecto ie b con tr cting a dis ected ac clic ga h of b-tr ajecto location connection (STLC-DAG), , hich i defined a $S T L C-D A G=(V, E)$, he: e
the exter. el V conit of all b-tajectorie (STRSet), a tax exter s, and an end e: tex. e, namel $V=\{S T R S e t\} \cup\{s, e\}$;
the edge et E con it of t_{s} o catego ie of di ected edge. One, denoted a E_{s}, ithe dis ected edgethat connect if. obsajecto ie inthe ametr ajecto: The othe, denoted a E_{d}, i the di ected edge that connect a liceable ais $\left\langle S T R_{i}^{j}, S T R_{m}^{n}\right\rangle$, a $\mathrm{h}_{\mathrm{s}} \mathrm{n}$ in Fig. 5.

Since the e a e the m lii le e ence in the gah, all fir t etex.e fom the e e ence con tii. te a candidate vertex set $(\boldsymbol{C V S}),{ }_{\text {w }}$, hich i defined b E. 8 .

$$
\begin{equation*}
\operatorname{CVS}\left(\operatorname{STR}_{i}^{j}\right)=\left\{\operatorname{STR}_{m}^{n} \mid \operatorname{STR} R_{m}^{n}=\operatorname{first}\left(\left\{t i\left(\operatorname{STR}_{m}^{k}\right) \subset \operatorname{gap}\left(\operatorname{STR}_{i}^{j+1}{ }_{,}^{k}, \operatorname{STR}_{i}^{j}\right)\right\}\right), m \in D T_{i}\right\} \tag{8}
\end{equation*}
$$

Fo: ©.am le, in Fig. 5, CVS $\left(S T R_{A}^{1}\right)=\left\{S T R_{B}^{1}, S T R_{C}^{1}, S T R_{D}^{1}, S T R_{E}^{2}\right\}$.
Lemma $3 \mathrm{hq}_{5}$ that ${ }_{v}$ hen atsajecto cannot lice ${ }_{k}$ ith anothe: t ajecto , the edge
 of liceable tr ajector ie to change.
 ag. ment : the b-trajecto el STRSet and the di joint time el $D T$, aese. lt ofs nning the algo ithm queryDTsTR, and γ i a di tance the hold. The algo ithm 2_{v} illset $\leqslant \mathrm{n}$ a et $S P=\left\{S P_{1}, \ldots, S P_{n}\right\}{ }_{\text {w }}$ he e each $S P_{i}$ i ago. of liceable trajectorie.

```
Algorithm 2: createSTLC-DAG
    Input: STRSet, \(\gamma, S P=D T\)
    Output: \(S P\)
    sortByStartTime(STRSet);
    \(D A G . V=S T R S e t \cup\{s, e\}\);
    DAG.E.Es \(=\) createEsEdge(STRSet, s,e);
    \(C=\phi\);
    for \(k=0 ; k<\operatorname{len}(\) STRSet \() ; k++\) do
        \(\operatorname{STR}_{i}^{j}=\operatorname{STRSet}[k] ;\)
        for each \(\operatorname{STR}_{k}^{v} \in \operatorname{sort} \operatorname{ByDes}\left(C . g e t\left(S T R_{i}^{j}\right)\right)\) do
            \(s g=0\);
            repeat
                if !existPath \(\left(S T R_{k}^{v}, S T R_{i}^{j}, S P_{k}, D A G\right)\) then
                    DAG.E.Ed.delEdges \(\left(T R_{k}, T R_{i}\right)\);
                \(S P_{i}=S P_{i}-k ;\)
                \(S P_{k}=S P_{k}-i ;\)
                C.del \(\left(\left\langle T R_{i}, T R_{m}\right\rangle\right)\);
                \(s g=|C| ;\)
            else
                \(s g=s g-1 ;\)
            \(\left\langle\operatorname{STR}_{k}^{v}, \operatorname{STR}_{i}^{j}\right\rangle \leftarrow C . \operatorname{next}\left(\operatorname{STR}_{k}^{v}, \operatorname{STR}_{i}^{j}\right) ;\)
        until \(\left\langle\operatorname{STR}_{k}^{v}, \operatorname{STR}_{i}^{j}\right\rangle \neq \phi \& \& s g>0\);
        canT RSet \(=\operatorname{CVS}\left(\operatorname{STR}_{i}^{j}\right)\);
        for each \(S T R_{m}^{n} \in \operatorname{canT} R\) Set do
            if \(d\left(S T R_{i}^{j}, S T R_{m}^{n}\right) \leq \gamma\) then
                DAG.E.E \({ }_{d} \cdot \operatorname{addEdge}\left(S T R_{i}^{j}, S T R_{m}^{n}\right) ;\)
            else
                C. \(\operatorname{add}\left(\left\langle S T R_{m}^{n}, S T R_{i}^{j}\right\rangle\right)\);
    ¢ el \(\subset n S P\);
```

Initiall, the algosithm oft all b-tajectorie in STRSet b thei tatime, aseate all etexe, and connect the e etexe that belong to the ame trajecto (Line 1 3). C i a containe: that a e ais of b-trajector ie hich a e likel to be indir ectl liced b
othe: b-tr ajector ie (Line 4). For each b-tr ajecto $S_{T R}^{j}$ in STRSet, it candidate e:tex. et $C V S\left(S T R_{i}^{j}\right)$ i fis tl oblained b E. 8. Then, the algo ithm ce eate a dis ected edge bet , een the t_{k} o b-tr ajecto ie $S T R_{i}^{j}$ and $S T R_{m}^{n}$
 in the g a $\mathrm{h} S T L C-D A G$, the t_{s} ot ajecto ie can be liced accor ding to Theor em 1. At the ame time, the algo ithm can find go of liceable tr ajecto ie $S P,_{\mathrm{r}}$, he e each $S P_{i}$ i a et of t ajector ie that can be dis ect α indis ectl liced ${ }_{v}$ ith the t ajecto $T R_{i}$ ba ed on Theo em 2.

Theorem 1 If there exists a directed edge between two trajectories in the graph STLC-DAG, the two trajectories can be spliced.

Theorem 2 For each $S P_{i} \in S P$, where $S P$ is one of the output parameters of algorithm 2, $S P_{i}$ is a set of trajectories that can splice with the trajectory $T R_{i}$.

The abo $\mathrm{et}_{\mathrm{t}} \mathrm{o}$ soof a e so ided in A endix. B.

```
Algorithm 5: findApproxMaxCTR
    Input: \(S P, S U B G=V, C A N D=V, d, k, c=0, f C T R=\phi\)
    Output: fCTRSet: a \(f C T R\) et
    if \(S U B G!=\phi\) then
        if \(c=k\) then
            if \(|C A N D| \leq(d-k)\) then
                \(f C T R \leftarrow C A N D ;\)
            else
                fCTR \(\leftarrow\) take First \((C A N D, d-k) ;\)
            \(f C T R S e t ~ \leftarrow f C T R\);
            return ;
        \(i=\operatorname{subscript}\left(\max \left|S U B G \cap S P_{i}\right|\right), i \in S U B G ;\)
        branch \(=C A N D-S P_{i}\);
        while branch \(!=\) null do
            \(b=\) takeFirst(branch);
            \(f C T R \leftarrow b\);
            \(S U B G_{b}=S U B G \cap S P_{b} ;\)
            \(C A N D_{b}=C A N D \cap S P_{b} ;\)
            \(f C T R S e t=\) findApproxMaxCTR(SP,SUBG, CAND \(\left._{b}, d, k, c+1, f C T R\right)\);
            \(C A N D=C A N D-\{b\} ;\)
    else
        \(f C T R S e t \leftarrow f C T R ;\)
    \& et n fCTRSet;
```

Ba ed on the abo e anal i, , de ign an algo ithm findApproxMaxCTR to find a cos. imaie max.imal liced aih ickl. The detailed e docode of findApproxMaxCTR i li ted in Algo ithm 5. The algox ithm i imila to Algo ithm 4 ex ce the code on Line 28. The additional amete a a follo $: d, k$, and c, , hee d i . ed to limit the n mbe: of liceable trajecta ie in one com lete trajecto ; k, ${ }_{\text {r }}$, hich i . ed to limit the time of inte: ection bet een i_{s} o $S P$, i as ec s i e de th of the algo: ithm; and c seco d the $\mathrm{c} s$ ent time of com ting inte: ection in a liced ath $f C T R$. The code on Line $28 \mathrm{~h} \mathrm{p}_{\mathrm{F}} \mathrm{h} \mathrm{F}_{\mathrm{F}}$ to deal ${ }_{v}$ ith t ajecto ie in $C A N D_{k}$, hen $c=k$. If the i e of $C A N D$ i le than $d-k$, all to ajecto ie in CAND a e added into $f C T R$ (Line 3 4). If the i ei moethan $d-k$, the fir t $(d-k) t$ ajecto ie ase added into $f C T R$ (Line 6).

4 Time complexity analysis

In thi ection, ${ }_{5}$ e antif thes. nning time of the abo e algo ithm and igno e algotithm in the se soce ing te, ch a the con tr ction of $B^{+}-t$ ee and $D T$-inder., beca e the can s. n offline. Let \boldsymbol{T} (function) be the s. nning time of the function, M be the n mbe: of b-ts ajectocie, and N be the n mbe: of t ajector ie .

Lemma 7 For the algorithm queryDTsTR, if the query time interval T consists of time slices from the $D T$-index, namely $T_{1}=0$ and $T_{2} \neq 0$, the running time of queryDTsTR is $O\left(N^{2}\right)$; if the query time interval T does not contain the time slice for the DT-index, namely $T_{2}=0$ and $T_{1} \neq 0$, the running time of queryDTsTR is $O\left(M^{2}\right)$.

Proof Since all b-trajector ie ae index ed b B^{+}-tee, the time of es ing m bt. ajecto ie i $O\left(\log _{b}^{|\Omega|}+M\right) .|\Omega|$ and b ace con tant. And, $l o g_{b}^{|\Omega|} \ll M$. So, the : nning
time of seading all b-tr ajecto ie in T i $O(M)$. At the ame time, $R\left(T_{1}\right)$ and $R\left(T_{2}\right)$ can be oblained. If $T_{1}=0, D T\left(T_{1}\right)$ doe not needto be com . ted. The: efos e, $T($ readSTR $)=O(M)$. If $T_{1} \neq 0$, thes . nning time of com ting $D T\left(T_{1}\right)$ i $O\left(M^{2}\right)$. And, $T($ readSTR $)=O\left(M^{2}\right)$. If $T_{2}=0, \mathrm{E} .7$ doe not need to be com ted. So, $T($ query $D T s T R)=O\left(M^{2}\right)$.

If $T_{2} \neq 0$, gi enthat T_{2} con it of k time lice ${ }_{k}$, hich $a \mathrm{e}$ in diffes ent le el in $D T$-index., k node in the $D T$-inde. need to be sead. Each node contain no mose than N item in hich the e a e at mot $N T R$. Acco ding to E. $7, T(\mathrm{E} .7)=O\left(k N^{2}\right)$. The s. nning time of inte: ection bet, een $D T\left(T_{1}\right)$ and $D T\left(T_{2}\right)$ i $O\left(N^{2}\right)$. So, $T(q u e r y D T s T R)$ i $O\left(N^{2}\right)$.

Lemma 8 The running time of the algorithm createSTLC-DAG is $O\left(M^{2} N^{2}\right)$.
Proof Let $P=\sum_{i=1}^{N}\left|D T_{i}\right|,{ }_{k}$ he: e $D T_{i} \in D T$. So, $N \leq P \leq N^{2}$. The s . nning time of ceating e:texe (Line 3) and edge (Line 4) both ae $O(M)$. In each loo (Line 5), $T($ getCandSet $)=O\left(m_{k}\right),{ }_{k}$ he: e $m_{k}=|C V S(i, j)|$. And, the n mbe: of loo bet , een Line 21 and 25 al oi m_{k}. T (addEdge) and T (add) both a e $O(1)$. The n mbe: of ceating all edge in E_{d} (Line 20 25) i $\sum_{k=1}^{M} m_{k}$ incelen(STRSet) $=M$. Acco dingto $C V S\left(S T R_{i}^{j}\right)$ (E. 8), $m_{k} \leq D T_{i}$.

Since mox e b-c ajectoc ie in $T R_{i}$ se . li in le $\left|D T_{i}\right|$, the n mbe: of all edge i $\sum_{k=1}^{M} m_{k}$ and $\sum_{k=1}^{M} m_{k} \leq \frac{k M}{N} \times P,_{\text {k }}$ hes e $k \ll N$. Mos eo e,\leftarrow. nning time of p seudocode on Line 2025 i $O\left(\frac{M}{N} \times P\right)$. If all edge aceadded into $D A G$ (Line 23), C i em 1 . If all edge ace added into C (Line 25), the longe time that exist Paths. n i $\frac{M}{N} \times P$ beca edelEdges (Line 11) can delete ome edge. T (exist Path) de end onthen mbes of e:tex.e andedge bet. een the t_{k} o . b-tr ajector ie $S T R_{k}^{v}$ and $S T R_{m}^{n}$. So, $T($ exist Path $)=O\left(M+\frac{M}{N} \times P\right)$. Ther nningtime of oe: ation on Line 1117 all i $O(1)$. Thes nningtime of pseudocode on Line 519 i $O\left(\frac{M}{N} \times P \times\left(M+\frac{M}{N} \times P\right)\right)=O\left(\frac{M^{2}}{N} \times P+\frac{M^{2}}{N^{2}} \times P^{2}\right)$.

Th,$T($ createSTLC-DAG $)=O\left(M+\frac{M}{N} \times P+\frac{M^{2}}{N} \times P+\frac{M^{2}}{N^{2}} \times P^{2}\right)=O\left(\frac{M^{2}}{N} \times P+\frac{M^{2}}{N^{2}} \times\right.$ $\left.P^{2}\right)=O\left(\frac{M^{2}}{N} \times\left(P+\frac{P^{2}}{N}\right)\right) . \mathrm{O}_{\mathrm{V}}$ ing to $P \leq N^{2}, T($ createSTLC-DAG $)=O\left(M^{2} N^{2}\right)$

Lemma 9 The running time of the algorithm findMaxCTR is $O\left(3^{N / 3}\right)$.
Proof See Theo em 3 of [34].
Lemma 10 Let D be a maximal degree of vertexes in the $S P$-set graph. The running time of the algorithm findApproxMaxCTR is $O\left(N(N-D) C_{k-1}^{D-1}\right)$. Moreover, if k in Eq. 11 is a small numerical value, the running time of the algorithm findApproxMaxCTR is $O\left(C N^{2}\right)$, where C is a constant.

Proof Whenthe alga ithmex.ec te (de th 0)the code on Line 11 for the fir time, \mid branch $\mid=$ $N-D$. The alga; ithm ill gotothe b anch $S P_{b}$, he e the mar imal deg ee of eitex. b i D. The: efor e, $\left|S U B G_{b}\right| \leq D$. When it ex.ec. te (de th 1)the code on Line 11 for the econdtime, \mid branch $\mid \leq D-1$. When it ex.ec te the code on Line 11 for the thit dime, \mid branch $\mid \leq D-2$.

Each b anchse eat the abo e soce nitilthe de th of ite: ations eache k. A the de th inc: ea e , \mid branch \mid dec: ea e . Mo eo e , in de $\mathrm{th} k-1$, \mid branch $\mid \leq D-k+1$. Acco dingto Theo em 1 of [34], the algo ithm gene: ate all max imal cli ef itho td lication. So, each bs anch in the de th 1 i looked ai a a combination C_{k-1}^{D-1}. The : nning time of $S U B G \cap S P_{i}$ on Line 9 i $O(N)$. Th $\quad, T($ findApproxMaxCTR $)=O\left(N(N-D) C_{k-1}^{D-1}\right)$. When k i mall, C_{k-1}^{D-1} i al o mall. Then, $T($ findApproxMaxCTR $)=O\left(C N^{2}\right)$.

Table 2 Pa amete:

Notation	Definition
γ	The the e hold of the di tance bei een $S T R$
d	The max. imal length of a liced ath
p	E. 10
k	To k com letetrajector ie $(C R T)$ ated b E. 4

5 Experiments

In thi ection, ${ }_{5}$ e se ent the al ation of the trajector licing e: (Definition 5) and
 48], , hich i . ed to e: if the effecti ene of or algo ithm beca e it secod labeled ts ajector ie. The othe i camea a to ajecto, , hich contain t ajector ie geneated b the soad afet came: a. Mox eo e: came: atrajecto i mainl ed to te the s nning time of algo ithm, e eciall the algoxithm queryDTsTR ba ed on the $D T$-index, beca e it ha las ge amo nt of t ajector ie.

We e the $t_{\text {s }}$ o algo: ithm findMaxCTR and findApproxMaxCTR to im lement the ts a-
 Ja a lang age on a Lin x . e: e_{f} ith Intel Xeon ad-cos e and 8 GB of main memo. . The

5.1 Evaluation on geolife

5.1.1 Data set and parameter setting

In the ex. e: iment, ${ }_{\text {th }}$ e extr act trajector ie from GeoLife in 2008 a the te t data et. Thi te t data et contain 4405 tr ajecto ie from 32 . e: . Each egment of tho etrajecto ie ha been
 t ain, ${ }_{k}$ alk, ais lane, and othe: The e egment a e con ides ed f om 11 diffee ent data et . So, egment fom the ame e_{r} ith the ame label make the t aject α defined in the a es, denoted a $T R$. Each egment i the b-trajecto defined in the a es, denoted a STR. The te 1 data et contain $138 T R$ and 4405 STR, li ted in Table 3.

The f nction $\operatorname{dist}(i, j)$ i the E clidean di tance bet een t_{f} o $T R_{f}$ ith t_{f} o label i and j, , e ecti el. Table 4 lit max.im m, mean, and axiance of $\operatorname{dist}(i, j)$. Fox ex.am le, the fir $16 \rho_{5}$ in Table 4 se $s e$ ent the mean, x iance, and max. di tance bet een bike-TR and othe: $-T R,{ }_{\mathrm{w}}$ hich a e $109,477 \mathrm{~m}, 146,006 \mathrm{~m}$, and $212,719 \mathrm{~m}$, e ecti el. We et fos al e

Table 3 Com o ition of $T R$ Daia et

Id	Daia et	$T R$	$S T R$	Id	Daia et	$T R$	$S T R$
1	Ai. lane	1	2	7	S. b. a	7	108
2	Bike	14	301	8	Tax. i	13	71
3	Boai	1	1	9	Train	4	12
4	B.	22	426	10	Walk	28	756
5	Ca	16	337	11	Othe:	30	2383
6	R n	2	8				

Table 4 Mean, Var iance and Mar. in $\operatorname{dist}(i, j)$

Dist	Mean (m)	Var (m)	Max (m)	Dist	Mean (m)	Var (m)	Max (m)
1,11	109,477	146,006	212,719	4,9	133,446	173,046	255,808
1,4	14,576	0	14,576	5,10	55,642	328,973	$2,415,622$
1,8	293,078	0	293,078	5,11	34,362	118,063	$1,063,245$
2,10	1500	2777	12,075	5,7	8564	39,313	267,034
2,11	11,257	84,761	$1,023,086$	5,8	11,348	20,908	76,762
2,4	2549	3654	12,689	5,9	13,957	0	13,957
2,5	10,001	17,305	52,276	7,10	5850	7080	31,996
2,7	13,171	20,661	44,042	11,7	41,265	132,648	637,270
2,8	58,703	118,024	269,712	7,8	2265	4143	11,631
3,4	59,156	73	59,207	8,10	15,221	26,122	77,098
4,10	12,583	84,028	986,741	11,8	223,333	$1,214,825$	$8,328,956$
4,11	23,340	110,415	$1,066,120$	8,9	761,691	951,360	$1,828,952$
4,5	124,336	548,462	$2,517,981$	9,10	66,511	98,627	235,890
4,6	601	1315	5516	11,9	468,275	466,053	$1,245,493$
4,7	5894	11,273	56,182	11,10	20,986	109,772	$1,125,060$
4,8	6966	18,875	77,229				

fo the a amete: γ, , hich ax $\gamma=m, \gamma=m+v, \gamma=m+1.5 v$ and $\gamma=\max$, he: $\mathrm{e} m$, v, and max a e mean, var, and max in Table 4, se ecti el.

5.1.2 findMaxCTR vs findApproxMaxCTR

In α de: to e al ate the effecti ene of the t_{k} o algoithm that lice trajectorie fom the abo e 11 data et, ${ }_{\text {r }}$ e define $\boldsymbol{e c a}, \boldsymbol{e c i} \boldsymbol{i}$, and \boldsymbol{c} eee a E.12,13, and 14. recallse se ent the abilit of ${ }_{v}$, hich the t_{5} o algo ithm canseco e: com lete trajecto ie $(C T R)$ fomthe abo e 11 data et ; precision can hq_{ξ} the deg ee of ${ }_{v}$ hichto $k C T R$ contain e: \mathfrak{i} ajecto ie in Geolife; completeness i the deg ee that one com lete trajecto: seco e: a. e: \mathfrak{i} aject α.

$$
\begin{equation*}
\text { recall }=\text { num }_{a} / \text { num }_{b} \tag{12}
\end{equation*}
$$

 total 32. e: t aject α ie in the data et.

$$
\begin{equation*}
\text { precision }=\text { num }_{c} / k \tag{13}
\end{equation*}
$$

 to k com letetrajector ie sanked b E. 4 .

$$
\begin{equation*}
\text { completeness }=\frac{\mid \operatorname{label}(C T R) \cap(\text { userTra }) \mid}{\mid \operatorname{label}(\text { userTra }) \mid} \tag{14}
\end{equation*}
$$

whe the f nction label(.) set f n the et of t an otation mode in a t ajecto: ; \mid label (userTra)| i the n mbe: of label that a ea in a. e: trajecto userTra in the data et; and $|\operatorname{label}(C T R) \cap \operatorname{label}(u \operatorname{serTra})|$ i the n mbe: of label that a ea both in CTR and userTra.

Fig. 11 nbayes e
findMaxCTR ons ight tr ajecto ie

5.2 Evaluation on CameraTrajectory

5.2.1 Data set and parameter setting

Inthe data et, ats ajecto con it of am le oint that a e gene ated b coad afet came: a, $v_{\text {. }}$ hich eco d infor mation of ehicle that a b them. The data et ha 10,104 is ajecto ie and $12,741,728$ am le oint o es thee month at G an, China. Since ${ }_{k}$ e do not knq t_{0} hich $t r$ ajecto ie in the data el can be liced in ad ance, for com ting effecti ene of the algo ithm, ${ }_{\mathrm{t}}$ e man all elect 104 tr ajectorie fom the data et a te $t \mathrm{trajecto}$ ie
 ob e: e ho, man com lete trajector ie ($C T R$) contain the e te t it ajector ie. Th,, e can com a e recall, precision, and F_{1} bet L_{k},en the i_{v} o algox ithm. B etting the e hold speed $=1(\mathrm{~m} /)$ and distance $=10,000(\mathrm{~m})$, alltraject α ie in the data et ace lit into b-
 ($S T R$) in the data et.

5.2.2 findMaxCTR vs findApproxMaxCTR

With the a amete: $\gamma=5000 \mathrm{~m}$, the e . lt of findMaxCTR e: findApproxMaxCTR a e $\mathrm{ho}_{\mathrm{F}} \mathrm{n}$ in Fig. 12, he: e $(d=7, p=0.9),(d=14, p=0.9),(d=28, p=0.9)$, and ($d=38, p=0.9$) xe the fos g o. of a amete: infindApproxMaxCTR. findMaxCTR find total $13,581 \mathrm{goo}$ of liceabletrajecto ie. Ho_{f} e e:, it recalli abo $\mathrm{i} 20 \% \mathrm{a}$ ho n in Fig. 12a, beca e man liceable t ajecto ie fo nd b it do not atif the f. nction isSplicePath othat the a e di carded.

Com axd ${ }_{v}$ ih findMaxCTR, findApproxMaxCTR find a cos imate max imal liceable ts ajector ie ${ }_{\mathrm{r}}$ hich ate not checked b isSplicePath. Thes efore, it ha a highe recall than findMaxCTR ${ }_{\mathrm{r}}$, hen d i bigge:. Fo ex.am le, ${ }_{\mathrm{r}}$, hen $d=38$ and $p=0.9$, it recall a e 82% on completeness $=1$ and 93% on completeness $=0.85, \mathrm{e}$ ecii el. $\mathrm{Hq}_{\mathrm{s}} \mathrm{e} \mathrm{e}, \mathrm{c}_{\mathrm{s}}$ hen $d=7$, it ha a lof er recall beca e the code on Line 28 6. ne man b anche that contain liceable trajecto ie in Algo ithm 5. So, if d i in as ea onables ange, findApproxMaxCTR i mos es ob than findMaxCTR beca e it a cos.imatere. lt a e not filee ed b Definition 5.

When electing the fis 14000 se . l fo nd b the t_{s} o algo ithm, the seci ion of the
 can find mose ee trajector ie altho gh it ha a oo abilit to find eitajector ie ${ }_{\mathrm{w}}$ ith high

Fig. 12 findMaxCTR e: findApproxMaxCTR
com letene. Acco ding to the F1 cose on Fig. 12c, findApproxMaxCTR ${ }_{v}$ ith the fitted a amete: $(d=28$ and $p=0.9)$ i bette: than findMaxCTR. $\mathrm{Hq}_{\mathrm{s}} \mathrm{e} \mathrm{e}$, eaching fo: the sight amete al e i e to ble ome ince it need to tr man diffeent amete: al e. So, f. om the ie , of im licit, findMaxCTR i a good choice.
The time of findMaxCTRs, nning on GeoLife (138 TR) i abo i $160 s,{ }_{\text {s }}$, hile it time on

Table 5 Com onent in $D T$-s ee

Le el	DT-is ee		DF-k ee		
	\# of DTNode	Avg size (kb)		\# of DFNode	Avg size (kb)
1	13	39,002	12	33,124	
2	6	39,831	5	43,695	
3	3	37,905	2	87,141	

Fig. $13 \quad B^{+}$-tsee e: $\quad D T$-inder. on com ting $D T$

$D T$-tree and the $D F$-tree boih ha e thee le el of node ex.ce ther sood node. The i e of the B^{+}-ts ee and the $D T$-inder. a e 137 Mb and 1.65 Gb , e e ecti el, afte: con t . cting the ${ }_{6}$ is o index. . Table 5 li it the detail of he $D T$-inder. The i e of DTNode in differ ent le el a e almo the ame beca e, acco ding to E. 15, longe: the time, malle: the change in the di joint time et of atrajecto. $\mathrm{Ho}_{\text {s. }}$ e e , the change of i e bet , een DFNode at differ ent le el i big, beca e the: e i a ignificant differ ence beis een the o neighbo ing $\neg D T_{i}$ o that the i e of $D F_{i}$ i lage ba ed on $D F_{i}^{n}=\neg D T_{i}^{n}-\neg D T_{i}^{n-1}$. Altho. gh the i e of the $D T$-index. i e la ge, ome lo le data com se ion algaiihm, e.g., Lem elZi (LZ) com se ion algox ithm, can dece ea e it i e. B LZ78 algotithm, the i e of the $D T$-index. change fom 1.65 Gb to 700 Mb .

A mentioned ea lie: in queryDTsTR, if $T_{2}=0$, ii ${ }_{5}$ ill ea ch the di joint time et of all ${ }^{1}$ c ajector ie in the B^{+}-t ee (called $\boldsymbol{I T Q} \boldsymbol{e}$). If $T_{1}=0$, it , ill ea ch all the di joint time et in the $D T$-indes. (called DTQ e). Afte: ITQuery and DTQuerys. n 10 time in diffes ent time inte: al (8, 24, 40 da , and 3 month), thei a eage time i hon in Fig. 13.

A a entl, DTQuerys. n fa te: than ITQuery beca e the time com lex.it of DTQuery i $O\left(N^{2}\right)_{\text {w }}$, hile the time com lex. it of ITQuery i $O\left(M^{2}\right)$, and $M \gg N$. A the e: time gof. M become bigge: bit N doe not change. So, the main facto that affect thes. nning time of DTQuery i onl the I/O time of seading the di joint time et fom the $D T$-index.

* hich i b ilt ba ed on the time, oft tosets ie e b-tajectorie in the etime inte: al. Mos eo e: , the index e ba ed on B^{+}-t ee [37] and R-ts ee [18,33,35,40] can efficientl <0 ce the e: of time inte: al. Altho gh the e index.e can soce the e: the cannot efficientl deal ${ }_{v}$ iththe e: oftime-di joint et beca e, in each e: ,the onl oit to earch in a ecific time inte: al not in mile lime inte: al othat the need man es ie of time inte: al to di co e the etrajector ie ho etime a e di joint.
In addition tothe di joint time con t aint ontrajector ie, liceablet ajector ie se. ir ethat the ga di tance betif een them a e clo e eno gh that the con tit te a com letetrajecto: . S mbolictr ajector ie [13], , hich gi e a conce 1 al ief to nde: tand a io beha io of the mo ing object [30], can ca t se the e liceable trajectorie ba e ence of timede endent label. The mbolic trajecto of a mo ing object i se se ented a a e ence of nit $\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle,{ }_{n}$ he: e $u_{n} \mathrm{i}$ a ai $\left\langle t, s_{b}, s_{e}, l\right\rangle$ in $_{v}$ hich i i atime inte: al, s_{b} and $s_{e} x$ e the location of i_{s} o end oint of the nit, and l i a label. Fox exam le, for the ca e in Sect. 1, the mbolictrajecto of Bobithe e ence $\langle([8: 00-8: 20], H$, A, walk), ([8: 23 - $9: 14], A, B$, subway), ([9: $16-9: 21], B, C$, walk), \ldots).

G ting et al. [13,29,35,40] ce eate the dat model of mbolictrajector ie andther index.e to offe: o eation to ear chtrajector ie b the abo e e ence oftime-de endent label . Mo e eciall , the eo ex ation ottoretrie e mbolictrajecto ie ${ }_{k}$, hich atif the condition of the time inte: al, atial di tance, and a e ence of label. Fo ex am le, thes etc ie al SQL of Bobts an ition from f_{f} alkto $\mathrm{b}_{\mathrm{f}} \mathrm{a}$ i 'select pid from Case 1 wheretrans matches' $* ~_{\text {w }}$ X (_walk) Y (_subway) $* / /$ Y.start $-X . e n d \leq d u r a t i o n(09000000)^{\prime}$ and pid $=$ Bob . In α de: to matchthe mbolictraject α fomthedataba e,the e: $m i k n q_{\text {t }}$ the e ence of label in ad ance. $\mathrm{Hq}_{\mathrm{f}} \mathrm{e} \mathrm{e}$, in the a e , the e ence of label i . nkno n befo e the e: begin tosetrie e liceabletrajectorie. So, mbolictrajecto method do not a 1 to e: ie for the liced mode.
S atiotem α al join $[32,49]$ find clo e air of t ajectorie fom i_{t} o data et, se ecti el, ba ed on the di tance bet een the ais of tiajectorie. Ba ed on the e clo e ai: , the tr ajecto join [1] setr ie e go of mo ing object that ha e imila mo ement at a differ ent time. Kex in Xie et al. [39] co o e a atiotem α al join method to a ociate egment of ats ajector ith oint of intere t (POI) acco ding to the di tance bet een a POI and ats ajecto and d $\leqslant \operatorname{ation}_{f}$, hich atrajecto i geog a hicall nea a POI. Ho e e: the di tance inthe e atiotem α al join method aethe imila it bets eenthe t_{5} ots ajector ie, ${ }_{5}$ hile the ga di tance bet een t_{5} ot ajector ie i the E clidean di tance. So atiotem oal join are not fit to find liceable trajecto ie defined in thi a e: beca ethe e liceable ts ajector ie a e not imila.

6.2 Trajectory pattern analysis and mining

The liced model need to find go. of liceable trajecto ie fom different tem. G. o. alte: n mining andtrajecto cl teing both find go o of mo ing object ba ed on imila it of thei tr ajecto ie in a ecifictime inte: al, ch a flock [8,9,36], con e [19], $v^{\text {a }} \mathrm{m}$ [27], g o. [26], gathe: ing [45], and t aject α cl tei ing method [24,25]. The e method define diffe ent di tance f. nction toe al ate the imila it bet eentrajecto ie, and de ign case onding cl te: algaithm to di co e go. of imila trajectorie. Hq e es, the e method ae not fit to find goo of liceable trajectorie beca e the find imila ts ajecto ie thile liceable tr ajector ie a e not imila. Anothe: line of e each on fee ent to ajecto mining taget at a igning ta a el co t-ba ed eight to edge $[15,16,42]$ and

time α f el con m tion [11,12]. Ho e e: onl fee entl tra e: ed edge and ath ace idenified, ${ }_{n}$ hich cannot be ed dis ectl to identif liceable trajector ie.

Fsomthe if of eco eing com lete et it ajectorie, a liceabletrajecto i one of ihe it an otation mode in the er com lete trajecto. So, di co eing liceable trajector ie
 infor mation abo i time, locaion, and t an α tation mode. Trajecta infer ence method [5, $28,31,46]$ eem to be able to make the abo e deci ion ince the e method can sedict a
e: location, infer hi tr an otation mode, and sedict ${ }_{v}$, hen and ${ }_{k}$ hes he ${ }_{k}$ ill change mode [28] ba ed on the $\mathrm{knq}_{\mathrm{F}} \mathrm{n}$ tr ajecto information. Hq_{f} e e , the e method a a not good at dealing ${ }_{v}$ ith the soblem of licing m lii letrajector ie q_{s} ing tothe t_{v} o follq ing sea on. One i that the soblem of tiajecto licing act on the differ ent data osce ${ }_{\kappa}$ hile ts ajecto infe: ence method act on a ingle data o. sce. In m lii le data o. sce, each data $o . s c e$ ha a diffes ent ID code and contain $t r a j e c t o s$ ie of one $t \cdot$ an otation mode, and it i diffic lito kno in ad ance ${ }_{\kappa}$ hethe: ts ajecto ie fom diffe ent data o. cce belong to a e: mo ement. So, the model of the soblem i not b ilt on a. e hi to tajecto. . Mo e ecificall, it i im o ibletoco nithe sobabilit that one. ef itche onetran otation mode to anothe: B. t , a ingle data o.sce make trajecto infe: ence method knq. e: com letetrajectos othat the canceate thei model ba ed on ex hita tsajecto.
 o that the can fom one go, hile the goal of trajecto infe: ence method ito sedict a. e: location, infe: hi tran otation mode, and oon. Fiom the ief of tatitical
 sege ion coblem. P: efe ence lean ning i able to identif di e: go with imila di ing sefe ence and th go thei trajecto ie togethe: [2,12,43]. Hq e es, it i nable to identif indi id aldi e: .
 that belong to the ame mo ing object b the $t_{\text {o }}$ method: $\left(\alpha_{1}, \alpha_{2}\right)$-file: ing and na e Ba e matching. Com $x \operatorname{ed}_{v}$ iih os meihod, FTL can link (lice) t_{v} otajector ie ba ed
 se ecti el. So, it a oid the di joint time con tr aint in $0 \sigma_{r}$ ak othat it can lice t_{r} o ts ajector ie e en if thei b-trajecto ie o e: la ith each othe: in time. Hq_{f} e e: it doe not. ort m lii letrajector ie licing efficienil beca e the i_{v} o abo e meihod ${ }_{v}$ ill be in alida mosetrajectorie a e in ol ed in a liced soce. Ne e:thele , of method can

 di tincti ese se entation of di ing beha io and then cl te: the se se entation [20], b. tignose di joint time and atial clo ene .

7 Conclusion

Inthi a e: ${ }_{x}$ e i. d the soblem of tic ajecto:
licing,,$_{\text {, }}$ hichs econ \mathfrak{t}. ct indi id al com-
 ch a the n mber of the b-tiojectorie, and the ha e of the b-trajecto ie, to e al ate the alit of the secon t. cted indi id al com letetrajecto. It i al of inte e tio a alleli e [41] the so o ed algo ithm to im so e the efficienc and toselax. the time-di joint con $\mathfrak{t r}$ aint to extend the liced model to incl de mose indi id al atialtajector ie .

Acknowledgements We_{v} o. ld like to thank P: ofe α Chitian S. Jen en for ef 1 di c ion and comment . Thi ${ }_{k}$ of k_{k} a otted b National Science and Technolog Majo: P: oject (no. 2017ZX05018-005), National Nai cal Science Fo ndation of China (no. 61402532), Science Fo ndation of China Uni e: it of Pets ole m-Beijing (no. 01JB0415), and China Schola hi Co ncil.

Appendix A Computing disjoint time set

Lemma In the query interval time T, the disjoint time set $D T_{i}$ of each trajectory $T R_{i}$ can be computed by Eq. 6.

Proof Let $P_{c_{k}}$, hich i fo nd b existPath be a ath fiom $S T R_{k}^{v}$ to $S T R_{i}^{j}$. We fic tl so e the: em iexita ath P_{l} fom $S T R_{k}^{v}$ to $S T R_{i}^{j}$ in the csent $\mathrm{ga} \mathrm{h} S T L C$-DAG. P_{l} i antimeα de: ed e . ence ${ }_{\hat{V}}$ he: e each $S T R \in\left\{S T R_{m}^{n} \mid t i\left(S T R_{k}^{v}\right) . s t<t i\left(S T R_{m}^{n}\right) . s t<t i\left(S T R_{i}^{j}\right) . s t, m \in\right.$ $\left.M\left(P_{c}\right)\right\} \cup\left\{S T R_{k}^{v}, S T R_{i}^{j}\right\}$. And, $M\left(P_{c}\right)$ i a et of $T R$ that P_{c} ha e a edtho ghex.ce $t i$ and k. We so e the soblem accor ding to the follo ing it ation.

If $\left|M\left(P_{c}\right)\right|=0 \alpha:\left|M\left(P_{c}\right)\right|=1, P_{c} \mathrm{~m}$ i be P_{l}.
If $\left|M\left(P_{c}\right)\right| \geq 2, \quad$ o e P_{l} doe not exit in the c ssent $S T L C-D A G$. Let P_{a} be the ath contain the max.im m mber of $S T R$ fom P_{l}, , he: $M\left(P_{c}\right) \subseteq M\left(P_{a}\right)$. Then, at lea i one eite. $S T R_{m}^{n}$ f. om P_{l} i not on P_{a}. Acco ding totime, let $S T R_{m}^{n}$ be bel een $P_{a}[i]$ and $P_{a}[i+1]$, namel $t i\left(P_{a}[i]\right) . s t<t i\left(S T R_{m}^{n}\right) . s t<t i\left(P_{a}[i+1]\right) . t,{ }_{\text {w }}$ he: e $P_{a}[i]\left(P_{a}[j]\right)$ i a i ih αj th $S T R$ in $P_{a}, m_{i}\left(m_{i+1}\right)$ i the b ciit of $P_{a}[i]\left(P_{a}[i+1]\right)$, and $m_{i}, m_{i+1} \in m\left(P_{c}\right)$. The efore, befores. nning the c csent air, the algo ithm ha ex.ec ted e al ation of the i_{s} o ais $\left\langle P_{a}[i], S T R_{m}^{n}\right\rangle$ and $\left\langle S T R_{m}^{n}, P_{a}[i+1]\right\rangle$. The e al ation genes ated t_{r} o follqq_{F} ing e . lt . Onei that, if the e doe notexita ath betw een $\left\langle P_{a}[i], S T R_{m}^{n}\right\rangle$ o: $\left\langle S T R_{m}^{n}, P_{a}[i+1]\right\rangle$, it $\mathrm{h} \mathrm{F}_{\mathrm{F}}$ $T R_{m}$ and $T R_{m_{i}}\left(T R_{m_{i+1}}\right)$ cannot be liced. So, $m_{i} \notin S P_{m}$ o: $m_{i+1} \notin S P_{m}$. Acco: ding to exist Path (Algo ithm 3), it cannot find that a ath contain $S_{T m_{i}}\left(S T R_{m_{i+1}}\right)$ and $S T R_{m}$. It contc adict ${ }_{f}$ ith P_{c}. The othe: i that, if the e doe ex.it both abo e ath , $S T R_{m}^{n}$ can be added into P_{a}. It conis adict ${ }_{k}$ ith P_{a} that ha the max im m mber of $S T R$ fom P_{l}. The: efoce, $P_{l} \mathrm{~m}$ iexit in the csent STLC-DAG.

Then, ince P_{l} fom $S T R_{k}^{v}$ to $S T R_{i}^{j}$ ex.it in $S T L C-D A G$, it im lie that thes e m tex. it a ath P_{b} foom the tat eitex to $S T R_{k}^{v}$ in the c.ssent $S T L C-D A G$. And, P_{b} contain all $S T R$ of $T R$ betf een the tat eiter and $\operatorname{STR}_{k}^{v}\left(P_{c}\right.$ ha a edtho ghthe e $\left.T R s\right)$. Thi i beca e the algo ithm ha soce ed se io ai $\left\langle S T R_{t}^{r}, S T R_{k}^{v}\right\rangle$. And, the e m i exit a aih P_{t} imila to P_{a} bel , een $S T R_{t}^{r}$ and $S T R_{k}^{v} q_{v}$ ing to the auh fo nd b existPath. And o on, the e se io ai for mine P_{b}. The: efore, the P_{b} and P_{l} can form a liced aih.

Lemma 5 If and onl if a ath fo nd bago ithm 3 contain b-trajectorie from $t_{\text {o }}$ diffe: ent trajector ie, the t_{6} otrajector ie can be liced.
 fromis otrajecto ie, e ecti el, acco dingto Lemma4, hetrajectorie that the ath a ed

liced. Acco ding to the definition 6, if $\mathrm{t}_{\mathrm{f}} \mathrm{o}$. b-tr ajecto ie a e liceable b-trajector ie, the: eexit a liced aththat can a tho ghall b-trajectorie of the t_{6} ots ajectorie

Theorem 1 If there exists a directed edge between two trajectories, the two trajectories can be spliced.

Proof S o e the: e i an edge betive $S T R_{i}^{j}$ and $S T R_{m}^{n}$, hich the t_{k} o $S T R$ belong to $T R_{i}$ and $T R_{j}$, se ecti el, and $T R_{i}$ cannot be liced ${ }_{v}$ ith $T R_{m}$. Acco ding to Lemma 5, at lea i one aik of $S T R$ fomthe \mathbb{t}_{r} o $T R$, e e ecti el, cannot be connected b a aihihat i fo nd b exist Path. B. t , a Algoc ithm 2 (Line 10) m tha e deleted all edge bet een $T R_{i}$ and $T R_{j}$ if it find that a ais betw een them cannot be connected b a ath. The efore, the e i not an edge betw. een them. It conts adict the a m tion that the: e i an edge bet. een $S T R_{i}^{j}$ and $S T R_{m}^{n}$.

Theorem 2 For each $S P_{i} \in S P$, where $S P$ is one of output parameters of Algorithm 2, $S P_{i}$ is a set of trajectories that can be spliced with the trajectory $T R_{i}$.

Proof At initiali ed ha e of Algocilhm $2, S P=D T$. S o e one $S P_{i}$ ha a b ciit m, and it cose e onding $T R_{m}$ cannot be liced ${ }_{v}$ ith $T R_{i}$. Acco ding to Lemma 5, the: e i not a ath belf een one ai $\left\langle S T R_{i}^{j}, S T R_{m}^{n}\right\rangle$. And, $S P_{i}=S P_{i}-m$ (Line 12 in Algox ithm 2), ha been exec. ted. It contr adict ${ }^{\text {ith }} S P_{i}$ beca e $S P_{i}$ contain m.
Lemma 6. In $S P$ - et ga h, a cli e i a go of liceable trajectorie, a max.imal cli e i a com letetrajecto.

Proof Ago of liceable trajecto ie can be di ectl or indir ectl liced ${ }_{f}$ ith each othe: The efore, the: e ex.it an edge bets een an t o of them. So, the go. of liceable trajec-
 ts ajector ie on the max imal cli e cannot be contained b othe: go. . So, the max.imal cli e in the gathi a com letet: ajecto: $C T R$.

References

1. Bakalo P, Hadjielefthe: io M, T ots a VJ (2005) Times elax.ed atiotem α alt aject α join . In: P:oceeding of the 13ih ann al ACM inte national ${ }_{\mathrm{F}}$ a k ho on geog a hic infor mation tem, $\mathrm{ACM}, \mathrm{Ne}$. Yo k, NY, USA, 182191
2. Dai J, Yang B, G o C, Ding Z (2015) Pe: onali edso te cecommendation. ing big is ajecto data. In: 2015 IEEE 31 i inte national confer ence on data enginee ing, 543554
3. Dai J, Yang B, G o C, Jen en CS, H J (2016) Path co i ditib tion e timation. ing tiajecto data. P: oc VLDB Endq 10(3):85 96
4. Ding Z, Yang B, Chi Y, G o L (2016) Enabling matic an ataion iem: a allel atio-tem ad databa e a soach. IEEE Ti an Com i 65(5):1377 1391
5. Ems ich T, Ks iegel HP, Mamo li N, Ren M, Z fle A (2012) Q e: ing ncetain atio-lem oal data. In: 2012 IEEE 28ih inte: national confes ence on data enginee: ing, 354365
6. E tein D, L ffle: M, Sis a h D (2010) Li ting all max imal cli e in a e ga h in nea -o timal time. In: Algo ithm and com tation, no. 6506 in lect se note in com te: cience, S s inge: Be: lin Heidelbe:g, 403414
7. Goh CH, L H, Ooi BC, Tan KL (1996) Index. ing tem ox al data. ing ex. iting B+-kee . Daia Kng 1 Eng 18(2):147 165
8. G. dm nd on J, an Ks eld M (2006) Com ting longe $t d$ ation flock ints ajector data. In: Ps oceeding of the 14 h ann al ACM inte: national m o i m on ad ance in geoga hic infor mation tem, ACM, Ne. Yoik, NY, USA, 3542
9. G. dm nd on J, an Ks e eld M, S eckmann B (2004) Efficient detection of motion atte: n in atiotem α al data et. In: P: oceeding of the 12 i h ann al ACM inter national ${ }_{v} \alpha \mathrm{k}$ ho on geoga hic information tem, ACM, Ne, Yo.k, NY, USA, 250257
10. G. o C, Jen en CS, Yang B (2014) Tq a d total to affic of a ene . SIGMOD Rec 43(3):18 23
11. G. o C, Yang B, Ande: en O, Jen en CS, Ta K (2015) Ecoma k 2.0: em of eing ecoヶo ting ith ehic la en \mathfrak{i} onmental model and act al ehicle f el con . m tion data. GeoInfor matica 19(3):567 599
12. G. o C, Yang B, H J, Jen en CS (2018) Lea ning to so te ${\underset{v}{ }}^{\text {ith }}$ a e trajecto et . In: IEEE 34th inte: national confe: ence on data enginee: ing, 10731084
13. G ting RH, Vald F, Damiani ML (2015) S mbolic tiajectorie. ACM Ta an at Algaithm S 1(2):7:1 7:51
14. Je ng H, Yi ML, Zho X, Jen en CS, Shen HT (2008) Di co e: of con o in trajecto databa e . 1:1068 1080
15. Kie T, Yang B, G o C, Jen en CS (2018a) Di ting i hingt ajecto ie fom diffe ent di e . ing incomletel labeledt ajector ie. In: P: oceeding of the 27ih ACM inte: national confes ence on infor mation and kno ledge management, $\quad 863872$
16. Kie T, Yang B, Jen en CS (2018b) O tlie: detection for m lidimen ionaltime eie ing dee ne al nei p_{y}; k. In: IEEE 19ih inte: national confes ence on mobile data management, 125134
17. Kie T, Yang B, G o C, Jen en CS (2019) O tlie: detection for time er ie ithsec scent a toencode: en emble . In: 28ih inte: national joint confe ence on atificial int elligence
18. Kote B, V gen J (2012) Combinato ial o timi ation, algo ithm and combinato ic, ol 21. S singe, Be: lin
19. Lee JG, Han J, Whang KY (2007) Tr ajecto cl té ing: a atition-and-g o. fame α k. In: Ps oceeding of the 2007 ACM SIGMOD inte national confes ence on management of data, ACM, Ne f_{F} Yo k, NY, USA, 593604
20. Lee JG, Han J, Li X (2015) A nif ing fame α, k of mining $t \in a j e c t a$ atte n of a io tem α al tighine . IEEE Ts an Knq, 1 Data Eng 27(6):1478 1490
21. Li X, Ceik te V, Jen en C, Tan KL (2013) Effecti e online go. di co e: intrajecto databa e . IEEE Tr an Knq, 1 Data Eng 25(12):2752 2766
22. Li Z, Ding B, Han J, Ka R (2010) S_{5} a m: minings elax edtem α al mo ing object cl te: . P: oc VLDB Endo $3: 723734$
23. Liao L, Patte: on DJ, Fos. D, Ka t H (2007) Lear ning and infes ing ts an atationso tine. Astif Intell 171(5 6):311 331
24. Saks MA, G ting RH (2011) S atiotem α al atte: n.ei ie . GeoInfor matica 15(3):497 540
25. S acca iets a S, Pa ent C, Damiani ML, de Macedo JA, Pato F, Vangenot C (2008) A conce i. al ief. on tr ajecto ie . Data Kno, 1 Eng 65(1):126 146
26. S. H, Zheng K, H ang J, Wang H, Zho. X (2014) Calibr atingtr ajecto data for atio-tem α al imila it anal i . VLDB J 24(1):93 116
27. S n J, Tao Y, Pa adia D, Kollio G (2006) S atio-lem α al join electi it $\operatorname{Inf} S$ 1 31(8):793 813
28. Tao Y, Pa adia D (2001) MV3:-Tsee: A atio-tem α al acce method for time tam and inte: al e: ie . In: P: oceeding of the 27th inter national confe ence on e: la ge data ba e , Mox gan Ka fmann P bli he: Inc., San Fs anci co, CA, USA, 431440
29. Tomita E, Tanaka A, Takaha hi H (2006) The ${ }_{k}$ a i-ca e time com lex it for gene ating all mar. imal cli e and com taitional ex e: iment. Theo Com i Sci 363(1):28 42
30. Vald F, G ting RH (2014) Indes. - oted atte n matching on mbolic tajecto ie . In: Ps oceeding of the 22Nd ACM SIGSPATIAL inte: national confes ence on ad ance in geog a hic infor mation tem , ACM, Ne. Yo k, NY, USA, 5362
31. Viei a MR, Bakalo P, T ots a VJ (2009) On-line di co e: of flock alte: n in atio-tem α al daia. In: P: oceeding of the 17ih ACM SIGSPATIAL inte national confe ence on ad ance in geoga hic info mation lem, ACM, Ne Yo. k, NY, USA, 286295
32. Wang L, Zheng Y, Xie X, Ma WY (2008) A flex ible atio-tem α al index ing cheme for la ge- cale GPS tr ack etr ie al. In: 9h inte national confe ence on mobile dat management, IEEE, 18
33. W. H, X e M, Cao J, Karca P, Ng WS, Koo KK (2016) F. ts ajecto linking. In: IEEE 32nd inte: national confee ence on dat a enginee ing, IEEE, 859870
34. Xie K, Deng K, Zho X (2009) From trajecto ie to acti itie: a atio-tem α al join a soach. In: P: oceeding of the 2009 inte national ${ }_{k}$ a k ho on location ba ed ocial net $t_{k}, k, A C M, N e_{j}$ Yo k, NY, USA, 2532
35. X J, G ting RH, Zheng Y (2015) The TM-RTs ee: an inder. on gene: ic mo ing object for cange e: ie . GeoInfor matica 19(3):487 524
36. Yang B, Ma Q, Qian W, Zho A (2009) TRUSTER: tr ajecto data soce ing on cl te: . In: DASFAA, 768771
37. Yang B, G. o C, Jen en CS, Ka 1 M, Shang S (2014) Stocha tic k lines o te lanning nde: time- a ing nce: taint. In: IEEE 30ih inte: nat ional confes ence on data enginee ing, 136147
38. Yang B, G. o C, Ma Y, Jen en CS (2015) Tq, ad e: onali ed, coniext t . a e: o. ting. VLDB J 24(2):297 318
39. Yang B, Dai J, G o C, Jen en CS, H J (2018) PACE: a ath-cents ic a adigm for tocha tic aih finding. VLDB J 27(2):153 178
40. Zheng K, Zheng Y, Y an N, Shang S, Zho X (2014) Online di co e: of gathe ing atte: no e: trajectox ie . IEEE Tr an Kno 1 Data Eng 26(8):1974 1988
41. Zheng Y (2015) Tr ajecto data mining: an o e: $\mathrm{ief}_{\mathrm{F}}$. ACM Tan Intell S i Technol 6(3):1 41
42. Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining inte: eting location and to el e ence fom GPS
 NY, USA, 791800
43. Zheng Y, Xie X, Ma WY (2010) Geolife: a collaba ati e ocial net α king e: ice among ee, location and tr ajecto . IEEE Data Eng B. 11 33(2):32 39
44. Zho P, Zhang D, Sal be: g B, Coo e: man G, Kollio G (2005) Clo e ai e: ie in mo ing object databa e. In: P: oceeding of the 13th ann al ACM inter national ${ }_{k} \alpha k$ ho on geog a hic infor mation tem, ACM, Ne f_{F} Yo k, NY, USA, 211
 in tit tional affiliation .

Qiang Lu secei ed a B.S. deg ee f: om Shen ang Uni e: it of Chemical Technolog, Shen ang, China, in 2000 and a Ph.D. deg ee fom China Uni e: it of Petr ole m-Beijing, China, 2006. Fs om 2015 to 2016, he ${ }_{t}$ a a i iting chola at the De atment of Com te: Science, Aalbog g Uni e: it, Denmak. He i c.csentl an A ociati e P:ofe α in the De atment of Com te: Science and Dis ecto of Com tation Intelligence Cente: at China Uni e: it of Petr ole m, Beijing. He i al o a fac lt membe: in Beijing Ke Lab of Petr ole m Data Mining. Hi se each inte:et incl de atial-tem ocal data coce ing, e ol tiona com ting, and machine lea ning.

Rencai Wang secei ed a B.S. deg ee fom China Uni e: it of Pets ole m-Ea i China, in 2014 and an M.S. deg ee from China Unie: it of Petc ole m-Beijing, China, in 2017. He i c. csentl $\mathrm{v}_{\text {a }}$ a king a a oft, ase enginee: ai IFLYTEK CO., LTD, se on ible for data anal i and mining on ed cation, and the de elo ment of the ed cation clo d latfom. Hi se each inte e t incl de atial tem α al data management, it aject α com ling, and data mining on beha io. of the ed cational . e:

Bin Yang i a P: ofe α in the De atment of Com te: Science ai Aalborg Uni e: it, Denmak. He ${ }_{\mathrm{v}}$ a at Aarh Uni e: it, Denmak and at Max. Planck In tit te fo: Infor matic, Ge: man. He secei ed the Ph.D. deg ee in com te: cience fom F dan Uni e: it. Hi se each intes t incl de machine lea ning and data management. He ${ }_{k}$ a a PC co-char of IEEE MDM 2018. He ha e: ed on $¢ 0$ gam committee and a an in iled se ief e: for e eal inter national confe ence and jo \& nal, incl ding ICDE, IJCAI, TKDE, the VLDB Jo $¢$ nal, and ACM Com ting S s e.

Zhiguang Wangs ecei ed a B.S. deg ee in h ic fom Inne: Mongolia No mal Uni e: it in 1986, an M.S. deg ee in com te: mete ing from Jilin Uni e: it in 1994, and a Ph.D. deg ee in com te: cience from China Uni e: it of Pets ole m-Beijing. He i c. csentl a Pt ofe α in the De atment of Com te: Science at China Uni e: it of Pets ole m, Beijing, e e: ed a Di ecto: of Re each Gro. of Lag ge Scale Daia P: oce ing and Vi ali ation. He i al o a fac it member in Beijing Ke Lab of Peis ole m Daia Mining, and a co ncil member in Beijing Ed cation Fedea ation. Hi cs ssent se each inte e i incl de data management, di trib ted tem, and atial-tem α al data mining.

[^0]: ${ }^{1}$ Namel $\left(t i\left(S T R_{m}^{n}\right) \subset \operatorname{gap}\left(S T R_{i}^{j}, S T R_{i}^{j+1}\right)\right) \cap\left(t i\left(S T R_{i}^{j}\right) \subset \operatorname{gap}\left(S T R_{m}^{n-1}, S T R_{m}^{n}\right)\right) \cap\left(d\left(\operatorname{last}\left(S T R_{i}^{j}\right)\right.\right.$, $\left.\operatorname{first}\left(S T R_{m}^{n}\right)\right) \leq \gamma$).

