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A B S T R A C T

Fluid catalytic cracking unit, whose batch operations are operated in a multirate mode, is a typical continuous
process with batch operations. The integrated optimization of this problem can be formulated as a hybrid
parametric dynamic optimization. To obtain a high-quality solution, adaptive direct methods are usually required
to solve the problem iteratively. By exploiting the decomposable structure, a novel framework is proposed in this
paper, which can obtain an equivalent or better precision solution with relatively coarse discretization. In detail,
by designating the batch operations as complicating variables, an optimal solution and sensitivity information
about batch operations are obtained by a nonconvex sensitivity-based generalized Benders decomposition algo-
rithm. Then the optimal continuous operations are implemented as extra closed-loop controllers by tracking the
necessary conditions of optimality, while the optimal batch operations are improved by a line search method.
The practical potential of the framework is demonstrated with several operation modes.
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1. Introduction

In the field of process systems engineering (PSE), there are
increasing demands for better modeling and optimization strategies.
Particularly, the integrated optimization of decision making from dif-
ferent levels is a critical technique to further increasing the economic
profit [1,2]. Decisions in chemical process can be classified into con-
tinuous and batch operations. Physically, continuous operations are
the operations that can be adjusted in real-time, while batch opera-
tions are only implemented at certain time instants. In general, batch
operations just mean that they are one-offs. Furthermore, they can
be classified mathematically. If batch operations represent binary or
integer numbers, such as planning, scheduling and designing of
quantized decisions, then the integrated optimization will formulate
a mixed-integer dynamic optimization (MIDO) [3�6]; if the batch
operations represent real numbers, such as the adjustment of flow
rate and the addition of catalysts, then the integrated optimization
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Fig. 1. Schematic diagram of FCCU with high-efficiency regenerator.
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optimization of continuous and batch operations will largely improve
the overall economic performance [7]. In detail, the batch operations
of FCCU include the addition of CO promoter and the adjustment of
combustion air flow rate, while CO promoter is a relatively expensive
resource and air blower consumes electricity. Moreover, they can be
operated in a multirate mode, i.e. implemented under different
cycles. To investigate the economic performance of FCCU under dif-
ferent operation modes, several cases have been considered in this
paper, such as CO promoter added every 8 h and combustion air flow
rate adjusted every 2 h.

The integrated optimization of continuous and batch operations
forms a hybrid parametric dynamic optimization problem. Intui-
tively, the parametrized solution can be obtained by Pontryagin max-
imum principle [20] or Belleman optimality principle [21] for fixed
batch operations, then it leads to a standard steady-state finite-
dimensional optimization problem. In fact, as a special kind of hybrid
system, its optimality conditions can also be obtained, namely hybrid
parametric minimum principle [22]. As most practical problems are
too complex to allow for an analytical solution from optimality condi-
tions, the direct methods are favored to solve optimal control prob-
lems, which parametrizes the continuous variables by discretization
and reformulates the original problem as a nonlinear programming
(NLP). As the batch operations can be parametrized by themselves,
the direct methods can be directly used to solve hybrid parametric
dynamic optimization problem. Moreover, according to the differ-
ence in the level of discretization, there are three types of direct
methods, i.e., the sequential method [23,24], the simultaneous
method [25,26] and multiple-shooting method [27,28].

By direct methods, the continuous and batch control variables are
treated equally without discrimination in the reformulated NLP,
which has three drawbacks: 1) it fails to distinguish the difference
between the continuous and batch operations; 2) it usually obtains a
suboptimal solution of original problem; 3) the solution is of the
open-loop form. As the implementations of batch operations are one-
offs, while the continuous control variables could be adjusted to
meet any real disturbance or mismatch, the optimal solution of batch
operation is far more valuable. Nevertheless, it is not reflected in the
simultaneous parameterization of continuous and batch operations.
To obtain a satisfactory solution efficiently, especially when the prob-
lem formulation contains large-scale models, e.g. those stemming
from industrial applications, the application of adaptive methods
[29,30] is usually inevitable, which generate a fully adaptive, prob-
lem-dependent parameterization by repetitive solution of increas-
ingly refined finite-dimensional optimization problems. To
implement the optimal solution in a close-loop form, the optimal con-
tinuous operations can be implemented as extra feedback controllers
by tracking the necessary conditions of optimality (NCO-tracking
scheme) [31, 32], which maintains near-optimal performance under
uncertainty, while the optimal batch operations are directly used [7].

Recently, a novel decomposition algorithm that combines NSGBD
with control vector parameterization (CVP) has been developed to
solve the hybrid parametric dynamic optimization [33]. It designates
batch operations as complicating variables and can be seen as a com-
bination of dynamic optimization on the continuous control variables
and sensitivity analysis on the batch control variables. In this paper, a
novel implementation framework based on NSGBD is proposed,
which implements optimal continuous control variables as close-
loop form while exploits the sensitivity information of NSGBD. In
detail, optimal continuous control variables are implemented by
NCO-tracking and a line search on batch control variables is con-
ducted to improve the solution quality of batch control variables.
This framework overcomes the drawbacks stated above and obtains a
high-quality solution of batch operations with a relatively coarse dis-
cretization against direct methods.

The rest of this paper is organized as follows: In Section 2, a brief
introduction of a FCCU with high efficiency regenerator is given, and
its batch properties are discussed, i.e. the addition of CO promoter and
the adjustment of combustion air flow rate. In Section 3.1, the mathe-
matical description of hybrid parametric dynamic optimization is
given, which can be solved and implemented by a tailored algorithm
given in Section 3.2 and an implementation framework given in Sec-
tion 3.3. In Section 4, the mathematical formulation of hybrid paramet-
ric dynamic optimization for FCCU is given, and four cases are solved
and implemented by the framework proposed in Section 3.3.

2. Batch properties of FCCU

The model adopted in this work is derived from the model of an
industrial FCCU with a high-efficiency regenerator as proposed by
the authors [7,34�36]. A schematic diagram of the FCCU with high-
efficiency regenerator is given in Fig. 1. Here, a short description of
model and operations is given.

The preheated raw crude oil reaches riser close to the bottom, and
contacts with atomizing steam to atomizing the feed for efficient con-
tacting of the feed and regenerated catalyst, which reactions are
taken as a five-lump model. Then the vapors and the catalysts sepa-
rate rapidly and efficiently in stripper, while product vapors exit the
upper cyclones and flow to the main fractionator tower. The purpose
of the main fractionator is to desuperheat and recover liquid products
from the reactor vapors. The spent catalyst flows into regenerator for
recovery, which mainly consists of two parts: a combustor where the
gases and the solids are fast-fluidized and a dense bed where the
gases and the solids are only bubbling-fluidized. The regenerator has
three main functions: 1) it restores catalyst activity by burning off
the coke covered in the catalyst; 2) it supplies heat for cracking reac-
tions; 3) it delivers fluidized catalyst to the feed nozzles. Moreover,
flue gas and catalyst are separated in the freeboard and flue gas exits
the cyclones to a plenum chamber in the top of the regenerator.

The continuous operations of FCCU are normally controlled by PID
controllers. In specific, the regulatory PID control system of FCCU is
comprised of five controllers, which are the regenerated catalyst slide
valve controlling the riser temperature, the spent catalyst slide valve
controlling the catalyst inventory in the stripper, the recirculation slide
valve controlling the catalyst inventory in the dense bed, the steam
injected to the wet gas compressor turbine controlling the reactor pres-
sure and the flue gas slide valve controlling the pressure difference
between the reactor and the regenerator. Hence, the continuous opera-
tions are the adjusting of valve openings, or the setting of set-points of
these controllers. Apart from these operations, FCCU discussed in this
paper has two extra batch operations, namely the adjusting of combus-
tion air flow rate and the addition of CO promoter.

The air blower provides sufficient air velocity and pressure to
maintain the catalyst bed in a fluidized state while provides oxygen
for the combustion in the regenerator. Combustion air flow rate is
commonly adjusted through variable inlet guide vanes system [37],
which consists of a series of flat plates that can be turned to induce a
controlled inlet pre-whirl. The adjustment of combustion air flow
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rate is realized by tuning the setting angles of vanes. To reduce the
mechanical loss and increase the working life of variable inlet guide
vanes system, the control of combustion air flow rate might better be
intermittent. Hence, the adjustment of combustion air flow rate is a
batch operation of the continuous process.

Most FCCU uses CO promoter to assist the combustion of CO to
CO2 in the regenerator and to guarantee the safety of the operation
by avoiding afterburning in the freeboard. The amount and frequency
of CO promoter additions varies from one FCCU to another. In some
units, CO promoter is added to the regenerator two to three times a
day. In other FCCU, CO promoter is added only if the temperature rise
of freeboard exceeds the operation constraints. In this paper, CO pro-
moter is added manually and periodically in FCCU, which also
belongs to a batch operation of the continuous process.

Another special character about multi batch operations is they can
be operated in different cycles, i.e. multirate mode. One case studied
in this paper is that the addition of CO promoter is implemented
every 8 h, while the adjustment of combustion air is taken every 2 h.

3. Hybrid parametric dynamic optimization

3.1. Mathematical formulation of hybrid parametric dynamic optimization

The mechanism model of industrial processes and the constraint
equations are the basis of discussing hybrid parametric dynamic opti-
mization. For universality, a process model can be represented by dif-
ferential/algebraic equations (DAEs):

_xd ¼ f d

�
t; xdðtÞ; xaðtÞ;uðtÞ;uÞ ð1aÞ

0 ¼ f a

�
t; xdðtÞ; xaðtÞ; uðtÞ;uÞ ð1bÞ

where xdðtÞ2Rnd /xaðtÞ2Rna represents the vector of differential/alge-
braic state variables; u(t)/u represents the vector of continuous/batch
control variables. In this paper, the initial conditions xd(t0) are given
as the final values of the last period. Obviously, u acts as a parameter
in this process model.

The objective of a continuous process with batch operations is to
maximize the product yield and minimize the cost of feed and opera-
tion, which is represented as

min J u tð Þ;uð Þ ¼
Ztf
t0

�r t; xd tð Þ; xa tð Þ;u;uð Þ þ c1 t; xd tð Þ; xa tð Þ;u;uð Þð Þdt þ c2 uð Þ

ð2Þ
where cost function J is composed by three parts, r

�
t; xdðtÞ; xaðtÞ;u;u

�
and c1

�
t; xdðtÞ; xaðtÞ; u; u

�
are the product yield and the cost during

continuous operation, while c2ðuÞ is the cost for batch operations at
time instant t0. An extra differential state variable ~xðtÞ can be intro-
duced to simplify the form of J. In detail, let

~x ¼�r þ c1 ð3Þ
with initial condition

~xðt0Þ ¼ 0 ð4Þ
Without loss of generality, the differential state variable could still

be represented as xd(t). Then the cost function J can be simplified as:

minuðtÞ;uJ
�
xðtf Þ; uÞ ¼ ~xðtf Þ þ c2ðuÞ ð5Þ

where x(t) = (xd(t)T,xa(t)T)T.
The path constraints are represented as

xlb�xðtÞ�xub ð6aÞ

ulb�uðtÞ�uub ð6bÞ
where xlb ¼ ððxlbd ÞT ; ðxlba ÞT ÞT , xub ¼ ððxubd ÞT ; ðxuba ÞT ÞT , xlbd and xubd are the
lower and upper bounds of differential state variables; xlba and xuba are
the lower and upper bounds of algebraic state variables; ulb and uub

are the lower and upper bounds of continuous control variables.
Moreover, the constraints of u are represented as

ulb�u�uub ð7Þ
where ulb and uub are the lower and upper bounds of batch control
variables. The end-point inequality constraints are represented as

xflb�xðtf Þ�xfub ð8Þ
where xflb ¼ ððxflbd ÞT ; ðxflba ÞT ÞT , xfub ¼ ððxfubd ÞT ; ðxfuba ÞT ÞT , xflbd and x

fub
d are

the lower and upper bounds of differential state variables at end-
point; xflba and x

fub
a are the lower and upper bounds of algebraic state

variables at end-point; The end-point equality constraints could be
treated as special instances of end-point inequality constraints when
the lower bounds equal upper bounds.

From the above, the optimization of a continuous process with
batch operations is described as searching an optimal trajectory of
continuous control variables u(t) and an optimal value of batch con-
trol variables u to minimize Eq. (5), while satisfies Eqs. (1), (6), (7)
and (8). Then the hybrid parametric dynamic optimization could be
described by Problem (P1).

Problem (P1):

minuðtÞ;uJ
�
xðtf Þ; uÞ ð9aÞ

s:t: xdðt0Þ ¼ x0
d ð9bÞ

_xd ¼ f d

�
t; xdðtÞ; xaðtÞ;uðtÞ; uÞ ð9cÞ

0 ¼ f a

�
t; xdðtÞ; xaðtÞ;uðtÞ;uÞ ð9dÞ

GuðuÞ�0 ð9eÞ

Gu

�
uðtÞ

�
�0 ð9fÞ

Gp

�
xðtÞ

�
�0 ð9gÞ

Ge

�
xðtf Þ

�
�0 ð9hÞ

where

GuðuÞ ¼ u�uub

ulb�u

� �
ð9iÞ

Gu

�
uðtÞ

�
¼ uðtÞ�uub

ulb�uðtÞ

� �
ð9jÞ

Gp

�
xðtÞ

�
¼ xðtÞ�xub

xlb�xðtÞ

� �
ð9kÞ

Ge

�
xðtf Þ

�
¼ xðtf Þ�xfub

xflb�xðtf Þ

 !
ð9lÞ

As most practical problems are too complex to allow for an analytical
solution, the numerical algorithms are inevitable for solving optimal con-
trol problems. In practice, the direct methods are favored, and its key
idea is transforming the original infinite-dimensional optimization prob-
lem into a finite-dimensional NLP by the parameterization of continuous
variables. For sequential method, the continuous control variables are
approximated in finite dimensional linear spaces, while other continuous
variables are calculated by integration. Specifically, for continuous
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control variable u(t) 2 D, the approximation is carried out by

uðtÞ � buNðtÞ ¼
XN

i¼1
uNi f

N
i ðtÞ ð10Þ

where fN
i ðtÞ is the basis of the linear space

DN ¼ spanffN
1 ðtÞ;fN

2 ðtÞ; :::;fN
NðtÞg, and uNi is the projection of u(t) at

fN
i ðtÞ. Usually, the piecewise Lagrange interpolation polynomials are

used for fN
i ðtÞ, where m

�
suppfN

i ðtÞ\ suppfN
j ðtÞ

�
¼ 0 (measure) for

8i 6¼ j. Hence, it has <fN
i ðtÞ;fN

j ðtÞ> ¼ 0 for 8i 6¼ j for DN. For piece-
wise constant controls, the optimization horizon [t0,tf] is subdivided
into N � 1 control stages, i.e. t0 < t1 < t2 < . . . < tN = tf, and the orthog-

onal basis function fN
i ðtÞ can be represented as

fN
i ðtÞ ¼

1; ti�1�t�ti
0; else

�
ð11Þ

By sequential method, the continuous control variable u(t) is

parameterized by buN ¼ ððuN1 ÞT ; :::; ðuNNÞT ÞT and the dynamic optimi-
zation is transformed into an NLP. Since path constraints of original
problem will be transformed into interior constraints by sequential
method solver which only hold in separated points, additional end-
point constraints must be employed to prevent the violation of path
constraints on the entire time. For example, the variable y(t) has an
upper bound yub and lower bound ylb, after introducing two new

variables yl(t) and yu(t) with two differential equations _yl ¼ max
�

0;

ylb�yðtÞ
�

and _yu ¼ max
�

0; yðtÞ�yub
�

, and two initial conditions

yl(t0) = 0 and yu(t0) = 0, the additional end-point constraints can be
written as: yl(tf) = 0 and yu(tf) = 0. Moreover, if piecewise constant
controls are used for u(t), the path constraints for u(t) could be
enforced on buN . At this point, the reformulated NLP is described by
Problem (P2).

Problem (P2):

minbuN ;u
J
�
xðtf Þ;uÞ ð12aÞ

s:t: MXðt0Þ ¼ X0 ð12bÞ

M _XðtÞ ¼ F
�
t;XðtÞ;buN ;uÞ ð12cÞ

Gðu; buN ;Xðtf Þ
�
�0 ð12dÞ

where

M ¼ diagð1; ::::; 1|fflfflfflffl{zfflfflfflffl}
3ndþ2na

;0; :::; 0|fflfflffl{zfflfflffl}
na

Þ ð12eÞ

XðtÞ ¼
xdðtÞ
xbðtÞ
xaðtÞ

0@ 1A ð12fÞ

X0 ¼
x0
d

0

0

0B@
1CA ð12gÞ

F
�
t;XðtÞ; buN ; uÞ ¼

f d

�
t; xdðtÞ; xaðtÞ;buN ;u

j
�

f b

�
t; xðtÞ

�
f a

�
t; xdðtÞ; xaðtÞ;buN ;u

j
�

0BBBB@
1CCCCA ð12hÞ

f b

�
t; xðtÞ

�
¼

max
�
0; xlb�xðtÞ

�
max

�
0; xðtÞ�xub

�
0B@

1CA ð12iÞ
Gðu;buN ;Xðtf Þ
�
¼

GuðuÞ
G0

uðbuNÞ
G0

e

�
xbðtf Þ

�
Ge

�
xðtf Þ

�

0BBBBB@

1CCCCCA ð12jÞ

G0
uðbuNÞ ¼

GuðuN1 Þ
..
.

GuðuNNÞ

0BB@
1CCA ð12kÞ

G0
e

�
xbðtf Þ

�
¼ xbðtf Þ ð12lÞ
3.2. Nonconvex sensitivity-based generalized Benders decomposition

Since the hybrid parametric dynamic optimization has clearly
decomposable structure, GBD-based approach could be applied.
Recently a novel decomposition algorithm that combines NSGBD
with CVP has been developed to solve hybrid parametric dynamic
optimization [33]. It discretizes continuous control variables, des-
ignates batch control variables as complicating variables and
applies three techniques: (1) an extra variable and equality con-
straint is introduced to generate consistent linear Benders cuts,
which provides linear programming (LP) master problems and
sensitivity information of batch operations, no matter how the
complicating variables appear in the model; (2) for infeasible
points infeasible minimum problems are constructed to generate
supporting hyperplanes to cut off the infeasible region of compli-
cating variables and new feasible points; (3) with the check of
optimality conditions linear Benders cuts are directly manipulated
to tackle nonconvexity.

By designating the batch operations u as complicating variables
and introducing a new batch control variable u and an extra equality
constraint

h u; uÞ ¼ u�u ¼ 0ð ð13Þ
the NSGBD algorithm for Problem (P2) can be constructed with the
corresponding problems listed below:

Problem (P3):

ðbu j
N;ajJjaÞ ¼ arg minbuN

J
�
xðtf Þ;uja

�
ð14aÞ

s:t: MXðt0Þ ¼ X0 ð14bÞ

M _XðtÞ ¼ F
�
t;XðtÞ; buN ; u

j
�

ð14cÞ

G
�
u
j
a; buN ;Xðtf Þ

�
�0 ð14dÞ

where Jja is the optimal value of objective function.
Problem (P4):

ðbu j
N;b; u

j
bjmj

aÞ ¼ arg minbuN ;u
J
�
xðtf Þ;uÞ ð15aÞ

s:t: MXðt0Þ ¼ X0 ð15bÞ

M _XðtÞ ¼ F
�
t;XðtÞ; buN ; uÞ ð15cÞ

Gðu;buN ;Xðtf Þ
�
�0 ð15dÞ

h u; u j
a

� �
¼ 0 ð15eÞ

where mj
a is the multiplier of the equality constraint (15e).
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Problem (P5):

ðbu j0
N;c; u

j0
c Þ ¼ arg minbuN ;u

ku�u
j
t k 2

A ð16aÞ

s:t: MXðt0Þ ¼ X0 ð16bÞ

M _XðtÞ ¼ F
�
t;XðtÞ;buN ;uÞ ð16cÞ

Gðu; buN ;Xðtf Þ
�
�0 ð16dÞ

where

k u�uj k 2
A ¼ ðu�ujÞTAðu�ujÞ ð16eÞ

A is a symmetric positive definite matrix.
Problem (P6):

ðaj0
d; bu j0

N;d; u
j0
djmj0

bÞ ¼ arg min
a;buN ;u

a ð17aÞ

s:t: MXðt0Þ ¼ X0 ð17bÞ

M _XðtÞ ¼ F
�
t;XðtÞ;buN ;uÞ ð17cÞ

Gðu; buN ;Xðtf Þ
�
�ae�0 ð17dÞ

hðu; uj0c Þ ¼ 0 ð17eÞ
where mj0

b is the multiplier of equality constraint (17e) and e is vector
whose elements are all equal to one with proper dimension.

The constraints on u (Eq. (7)) can be represented as:

mi
c ¢ u�uubÞ�0; i2Ku

�
ð18aÞ

mi0
d ¢ u�ulbÞ�0; i0 2Kl

�
ð18bÞ

where mi
c ¼ ð0; :::; 0|fflfflffl{zfflfflffl}

i�1

;1;0:::;0|fflffl{zfflffl}
l�i

Þ and mi0
d ¼ ð0; :::; 0|fflfflffl{zfflfflffl}

i0�1

;�1;0:::; 0|fflffl{zfflffl}
l�i0
Þ.

Problem (P7):

hk
b; u

k
bjnka;nkb; nkc ;nkd

� �
¼ arg min

h;u
h ð19aÞ

h�Jja þmj
a ¢ u�u

j
aÞ; j2Kfeas

�
ð19bÞ
mj0
b ¢ u�uj

0
c Þ�0; j0 2Kinfeas

�
ð19cÞ

mi
c ¢ u�uubÞ�0; i2Ku

�
ð19dÞ

mi0
d ¢ u�ulbÞ�0; i0 2Kl

�
ð19eÞ

where nka, n
k
b, nkc and nkd are the Lagrangian multipliers for Kfeas, Kinfeas,

Ku and Kl,
Define

Ja ¼ fj2Z : ðnkaÞj 6¼ 0g ð20aÞ

Jb ¼ fj0 2Z : ðnkbÞj0 6¼ 0g ð20bÞ

Jc ¼ fi2 Z : ðnkcÞi 6¼ 0g ð20cÞ

Jd ¼ fi0 2Z : ðnkdÞi0 6¼ 0g ð20dÞ
Problem (P8):

ðuk
cÞ ¼ arg min

u
mk

a ¢ u ð21aÞ

mj0
b ¢ ðu�uj

0
c Þ�0; j0 2Kinfeas ð21bÞ
mi
c ¢ u�uuÞ�0; i2Kuð ð21cÞ

mi0
d ¢ u�ulÞ�0; i0 2Klð ð21dÞ

The basic equations about convergence:

LBD>UBD ð22aÞ

UBD�LBD< e1 ð22bÞ
The equations for the checking of optimality conditions:

kmk
a=J

k
a k B�e2 ð23aÞ

k uk
b�uk

c k B�e3 ð23bÞ
Algorithm 1: NSGBD with CVP for Problem (P1)
Step 1. Determine a set of proper inner points in optimization

horizon [t0,tf], namely t0 < t1 < t2 < . . . < tN = tf, and parameterize the
continuous control variable u(t) as buN . Find a point u1

t according to
Eq. (7); let j = 1, j0 = 1, Kfeas = ;, Kinfeas = ;, LBD = �1; set the hyper
parameters g , e1, e2 and e3.

Step 2. Solve the primal Problem (P3) for u
j
a ¼ u

j
t . One of the fol-

lowing cases must occur:
(1). Primal problem (P3) is feasible with bu j

N;a and Jja; solve the pri-
mal Problem (P4) for u j

a ¼ u
j
a at uja and bu j

N;a with mj
a. UBD ¼ Jja; One of

the following cases must occur:
①. LBD > UBD. ml

a ¼ gml
a, l 2Ja.

②. UBD � LBD <e1. One of the following cases must occur:
(a). jJbj + jJcj + jJdj = 0 (uja is an inner point). If Eq. (23a) is satis-

fied, then the algorithm terminated with optimal solution ðbu j
N;a; u

j
aÞ,

else ml
a ¼ gml

a, l 2Ja.
(b). jJbj + jJcj + jJdj 6¼ 0 (uja is a boundary point). Solve Problem

(P8) at uja with u
j
c . If Eq. (23b) is satisfied (u j

b ¼ u
j
a), then the algorithm

terminated with optimal solution ðbu j
N;a; u

j
aÞ.

③. Otherwise.

Kfeas ¼ Kfeas; j
� 	

; j ¼ jþ 1:

(2). Primal Problem (P3) is infeasible. Solve the Problem (P5) for ujt
with ðbu j0

N;c; u
j0
c Þ. Solve the Problem (P6) for u

j0
c at ðbu j0

N;c;u
j0
c Þ and a = 0

with mj0
b . Kinfeas = {Kinfeas,j0}. u

j
t ¼ u

j0
c , j0 = j0 + 1. Return to Step 2.

Step 3. Solve master Problem (P7) with hj
b, u j

b , nja, n
j
b, njc and njd;

LBD ¼ hj
b, ujt ¼ u

j
b. Return to Step 2.

Remark 1. The algorithm flowchart of NSGBD [13] is given at Fig. 2.
Problems (P3) and (P4) are the primal problems for fixed u

j
a to gener-

ate a Benders cut. The primal Problem (P3) is solved with fixed com-
plicating variables and the primal Problem (P4) is solved at the
solution found in primal Problem (P3). Problems (P5) and (P6) are the
infeasible minimum problems for infeasible u

j
t to generate a feasible

point uj
0
c and a supporting hyperplane of feasible region of u described

by mj0
b , which is used to approximate the feasible region of u. Problem

(P5) finds a feasible point that is closest to the infeasible point. Prob-
lem (P6) is solved at the solution found in primal Problem (P5) and
a = 0. Problem (P7) is the LP master problem for the generation of
new points. Ja is the index of active Benders cuts. At nonconvex
points, the multipliers of active Benders cuts indexed by Ja will be
multiplied by g to provide valid LBDs. Jb, Jc and Jd are the index of



active constraints for Kinfeas, Ku and Kl, which are used to distinguish
between boundary and inner points. Eq. (22a) indicates that the mas-
ter problem gives an invalid LBD, which indicates the nonconvexity
of original problem. Eq. (23a) and (23b) are the local conditions for
optimality at inner and boundary points. Problem (P8) is the corre-
sponding problem for Eq. (23b), which aims to check the optimality
conditions numerically. The key technique of NSGBD is the detection
of nonconvex points and the operation of corresponding active Bend-
ers cuts, which is described by Step 2 of Algorithm 1.

Remark 2. There are two properties of NSGBD that will be exploited
in the follows: 1) mj

a is the gradient (sensitivity) of projected cost
function at differentiable points [13] with respect to u; 2) parallel
scheme [38] can be easily embedded into NSGBD, i.e. multiple primal
problems can be solved independently and simultaneously.
3.3. Novel implementation framework of optimal solution

As primal problems are solved by a direct method, namely CVP,
the solution of continuous operations still share the common limita-
tions of direct methods, i.e. the solution of continuous operations is
usually suboptimal, which renders the solution of batch operations
suboptimal. Moreover, the solution of continuous operations is of the
open-loop form. To overcome these limitations, a novel implementa-
tion framework is proposed as follows.

The open-loop optimal continuous operations could tell the com-



next cycle, or the batch operations can be taken into a part of NCO
enforcement and adapt with continuous operations batch-to-batch,
while the algorithm is executed when large-scale change of working
conditions is expected.
4. Hybrid parametric dynamic optimization of FCCU

4.1. Mathematical formulation of FCCU

As discussed in Lin et al. [7], riser temperature is directly related
to the productivity of the valuable product, combustion air flow rate
is a mainly measure of adjustable utility cost and the addition of CO
promoter consumes extra resources, then continuous control variable
u(t) is taken as the set-points of riser temperature Tra_spðtÞ, while
batch control variables u are the adjustment of combustion air flow
rate V and the amount of added CO promoter Mpro. The batch opera-
tions are operated in a multirate mode, i.e. the CO promoter is added
every 8 h = 480 min and the air blower is adjusted every
2 h = 120 min. For simplicity, the value of economic objective function
is calculated by the difference between the current operation and the
nominal operation, which is:

minJ
�
Tra_spðtÞ; fVig4

i¼1;Mpro

�
¼ R 480

0

�
�v1dFd

�
t; Tra_spðtÞ; fVig4

i¼1;Mpro

�
�v1nFn

�
t; Tra_spðtÞ; fVig4

i¼1;Mpro

�
Þdt þP4

i¼1

R 120i
120ði�1Þ f ðViÞdt þv3Mpro

ð25Þ
where v1d, v1n and v3 denote the price of diesel, naphtha and CO
promoter; Fd and Fn are the yield of diesel and naphtha; f is the
energy consumption of air blower with respect to fVig4

i¼1. The con-
straints imposed on the decision variables and on the other state vari-
ables for FCCU can be referred in Lin et al. [7]. Hence, the hybrid
parametric dynamic optimization is to search an optimal trajectory
of Tra_spðtÞ and optimal values of Mpro and fVig4

i¼1 to minimize objec-
tive function Eq. (25), while satisfies the system model and con-
straints. Note that the economic objective function is multiplied by a
minus sign for the reformulation of a minimization form. To coincide
with the conventional custom, the minus sign is discarded in the nar-
ration.

To compare the effect of optimizing V as a batch operation and
provide an upper bound for above cases, a case considering V as a
continuous operation is carried out, whose cost function is

minJ
�
Tra_spðtÞ;VðtÞ;Mpro

�
¼ R 480

0

�
�v1dFd

�
t; Tra_spðtÞ;VðtÞ;Mpro

�
�v1nFn

�
t; Tra_spðtÞ;VðtÞ;Mpro

�
þ f
�
VðtÞ

�
Þdt þv3Mpro

ð26Þ
Considering the CO promoter may work on a preset way

(Mpro = 4kg), two extra cases are carried out to compare these effects.
All cases considered are given by Table 1. The detail about the well-
posed of this hybrid parametric dynamic optimization can be referred
in Lin et al. [7].

The NSGBD algorithm was implemented using gPROMS/gOPT to
solve the dynamic optimization primal problems, and MATLAB for
the LP master problems. Moreover, the piecewise constant controls
are used for the approximation of continuous controls with 16 equi-
distant meshes. Note that there aren’t batch operations in Case 3,
which makes the NSGBD unnecessary and is solved by normal CVP.
4.2. Case 1: Combustion air as a continuous operation whereas CO
promoter as a batch operation

In this case, the batch operation is Mpro and the continuous opera-
tions are Tra_sp and V, which is the case considered in Lin et al. [7],
where the adaptive CVP is used and the result will be compared lat-
ter. Here, there are 32 decision variables in the reformulated NLPs of
primal problems. Using the NSGBD algorithm, all the feasible primal
solutions, Lagrange multipliers and master solutions are summarized
in Table 2. Using a termination tolerance of e1=1, e2= 0.1 and e2= 0.1,
NSGBD algorithm converged after 5 iterations.

The parallel scheme is used in the first iteration, where primal
problems for M1:1

pro ¼ 2 and M1:2
pro ¼ 4 are solved simultaneously. The

algorithm converged in 5 iterations when J5 � LBD5 � 1 and km5/J5k �
5 £ 10�3 (inner point), and all the Mj

pro are feasible points. Current
optimal solution is M5

pro ¼ 3:1864kg, J5 = 1655.2<. The optimal solu-
tions of other continuous variables at iteration 5 are given in the solid
lines of Fig. 4.

As shown in the solid lines of Fig. 4a and 4b, the optimal solution
requires the higher riser temperature and combustion air flow rate
with the higher activity of CO promoter, which is the same as Lin
et al. [7]. As shown in Fig. 4c and 4d, the upper-bound constraints of
O2 molar fraction in flue gas and temperature rise in the freeboard
are active throughout the entire time, which means the optimal solu-
tion is only composed by constraint-seeking arcs. Hence, according to
NCO-tracking scheme, the optimal continuous control variables,
namely riser temperature set-points and combustion air flow rate,
can be determined by these two constraints. Hence, two extra regula-
tory controllers are needed to maintain two upper bounds con-
straints active, and it leads to an input-output pairings problem. As
discussed in Lin et al. [7], riser temperature set-points should pair
with temperature rise in the freeboard and combustion air flow rate
pairs with O2 molar fraction in flue gas.

Define L = {k 2 N: mk < 0}, R = {k 2 N: mk > 0}, then it should have
Mk

pro <M�
pro for k 2 L and Mk

pro >M�
pro for k 2 R. Hence, the rough esti-

mation of optimal batch operations for the original problem is

M�
pro 2 ðmaxk2 LM

k
pro; mink2RM

k
proÞ ¼ ð3:1864;3:3440Þkg ð27Þ

By the novel framework proposed in Section 3.3, a line search
with the implementation of NCO-tracking can be conducted, which is
shown in Table 3.

As shown at the first and third rows of Table 3, i.e. Mpro = 3.1864kg
and Mpro = 3.3440kg, better performances than the solution of primal
problems are obtained with the help of NCO-tracking scheme, which
is caused by the safety margin left at every constant control section
caused by discretization. By the last two rows of Table 3, optimal
solution of batch operation Mpro should reside in the interval [3.344,
3.45]kg. Then optimal implementation of batch operation can be
Mpro = 3.4kg with J = 2732.3<





Table 4
Partial feasible primal solutions.

Iteration 4.4 5 6 7 8 9 10

Mpro(kg) 2.5865 2.4590 2.7855 2.8738 2.8890 3.2639 3.3223
mM 8.9744 �21.541 27.047 25.754 20.927 53.115 58.887
V1(km3/h) 49.034 49.061 49.064 49.064 49.065 49.068 49.068
mV1 �3480.3 �3515.4 �3471.9 �3479.8 �3490.8 �3480.0 �3468.3
V2(km3/h) 48.952 48.977 48.978 48.979 48.979 48.980 48.981
mV2 �3456.5 �3462.7 �3447.1 �3476.1 �3461.9 �3428.1 �3434.2
V

optimal batch operations can be given as follows:

M�
pro 2 ðmink2 PM

k
pro;M

10
proÞ ¼ ð2:5865;3:3223Þkg ð28aÞ

V�
1 2 ðV10

1 ; maxk2N1
Vk

1Þ ¼ ð49:068;49:072Þkm3=h ð28bÞ

V�
2 2 ðV10

2 ; maxk2N2
Vk

2Þ ¼ ð48:981;48:983Þkm3=h ð28bÞ

V�
3 2 ðV10

3 ; maxk2N3
Vk

3Þ ¼ ð48:931;48:932Þkm3=h ð28bÞ

V�
4 2 ðV10

4 ; maxk2N4
Vk

4Þ ¼ ð48:896;48:897Þkm3=h ð28bÞ
Then a line search with the implementation of NCO-tracking can

be conducted as the simulations shown in Table 7.
As shown at the first row of Table 7, i.e. a simulation for

ðM10
pro;V

10
1 ;V10

2 ;V10
3 ;V10

4 Þ, better performances than primal problems of
NSGBD are also obtained with the help of NCO-tracking scheme. By the
last two rows of Table 7, the optimal solution of batch operations should
be taken as: Mpro 2 (3.3223, 3.3223)kg, V1 2 (49.076, 49.080)km3/h, V2 2
(48.988, 48.992)km3/h, V3 2 (48.938, 48.942)km3/h, V4 2 (48.904,
48.908)km3/h. Then optimal implementation of batch operations can be
Mpro = 3.3223kg, V1 = 49.078km3/h, V2 = 48.990km3/h, V3 = 48.940km3/h,
V4 = 48.906km3/hwith J = 1890.4<, and the corresponding simulation
with NCO-tracking scheme is given by the dash lines of Fig. 5. As can be
seen at the dash line of Fig. 5c, the safety margin left at every constant
control section has been largely eliminated by NCO-tracking. The batch
operation of combustion air flow rate introduces a cycle 2 h into the
optimization horizon 8 h, while there is an artificial cycle 0.5 h in the
solution of dynamic optimization (illustrated by the solid lines of Fig. 5).
Moreover, a better solution of batch operation is obtained by a line
search method.

For Cases 3 and 4, only the values of optimized cost functions
under NCO-tracking are given here for brevity, which are pro-
vided in Table 8. Comparing Case 2 to 1 and 4 to 3, the batch oper-
ation of combustion air deteriorates the economic performance.
The reason for this can be explained by the local enlarged
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