Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Enhancing gene expression programming based on space partition and jump for symbolic regression

Qiang Lu^{a,*}, Shuo Zhou^a, Fan Tao^a, Jake Luo^b, Zhiguang Wang^a

^a Beijing Key Laboratory of Petroleum Data Mining, China University of Petroleum-Beijing, Beijing, China ^b Department of Health Sciences and Administration, University of Wisconsin Milwaukee, Milwaukee, WI, United States

ARTICLE INFO

Article history: Received 23 April 2019 Received in revised form 15 August 2020 Accepted 18 August 2020 Available online 28 August 2020

Keywords: Symbolic regression Gene expression programming Genetic programming Multi-armed bandit Evolutionary computation

ABSTRACT

When solving a symbolic regression problem, the gene expression programming (GEP) algorithm could fall into a premature convergence which terminates the optimization process too early, and may only reach a poor local optimum. To address the premature convergence problem of GEP, we propose a novel algorithm named SPJ-GEP, which can maintain the GEP population diversity and improve the accuracy of the GEP search by allowing the population to jump ef ciently between segmented subspaces. SPJ-GEP rst divides the space of mathematical expressions into *k* subspaces that are mutually exclusive. It then creates a subspace selection method that combines the multi-armed bandit and the ϵ -greedy strategy to choose a jump subspace. In this way, the analysis is made on the population diversity and the range of the number of subspaces. The analysis results show that SPJ-GEP does not signi cantly increase the computational complexity of time and space than classical GEP methods. Besides, an evaluation is conducted on a set of standard SR benchmarks. The evaluation results show that the proposed SPJ-GEP keeps a higher population diversity and has an enhanced accuracy compared with three baseline GEP methods.

1. Introduction

Symbolic regression (**SR**) is a regression analysis that discovers a model that best ts a given dataset in the space of mathematical expressions. Unlike machine learning or neural network regression analysis that focuses on optimizing parameters in a prede ned model, SR aims to nd appropriate models and their parameters at the same time. Genetic programming (**GP**) [1] is a commonly used approach in SR to search for the optimal model. GP evolves to change individual structures of the population to generate tted models or computer programs by the three key genetic algorithm (**GA**) operations: selection, crossover, and mutation. To represent a mathematical expression, classical GPs usually describe individual encodings in trees [1 5]. Graph-based GPs, such as graph encoding GP [6,7] and Cartesian genetic programming [8,9], encode individuals into graphs. Linear GPs, such as gene expression programming (GEP) [10 12] and linear GP [13], convert individuals into linear strings.

Since these GPs all utilize GA operations, like genetic algorithms(GA), these GPs are prone to premature convergence [14]. From the perspective of exploration and exploitation [15], the reason for premature convergence is that individuals of a population are similar, hence, they tend to exploit their neighborhood instead of new regions. Therefore, maintaining the

https://doi.org/10.1016/j.ins.2020.08.061 0020-0255/© 2020 Elsevier Inc. All rights reserved.

^{*} Corresponding author. E-mail address: luqiang@cup.edu.cn (Q. Lu).

population diversity is a crucial task in evolutionary algorithms. A diverse population can encourage global exploration and reduce premature convergence [16,17].

In order to preserve the population diversity, the evolutionary computing (EC) community often uses two strategies: 1) parameter control and 2) space partition. The parameter control strategy [18] adjusts parameters of evolutionary algorithms based on population diversity, such as varying population size [19,20], and dynamically adjusting the probability of cross-over [21,22] and mutation [23,24]. The strategy is easy to implement population diversity and does not require additional storage spaces. However, it does not know or remember where individuals are in a search space so that it could produce invalid individuals, such as individuals similar to those of the previous generations.

The space partition strategy [25 30] splits a search space into many subspaces and generates individuals in different subspaces. As individuals in different subspaces have different phenotypes or genotypes, the strategy is easy to control population diversity quantitatively by generating individuals from different subspaces. Meanwhile, the strategy remembers an individual's approximate position in the search space according to the individual's subspace. Although the space partition strategy has been successfully applied in GA, it is not suitable for the SR problem, because the whole search space of SR is so large that maintaining ne-grained subspaces is intractable computationally.

In this paper, we propose a new gene expression programming based on **s**pace **p**artition and **j**ump (named **SPJ-GEP**) to maintain the population diversity. SPJ-GEP has the advantages of the above two strategies: it requires small additional storage space, remembers the position of an individual in the search space, and maintains quantitative population diversity. The SPJ-GEP partitions the space of mathematical expressions into *k* subspaces based on the chromosome coding. Moreover, it initializes individuals in one of the *k* subspaces, as shown in Step 1 in Fig. 1.

Next, SPJ-GEP selects a suitable subspace to search for individuals with better tnesses based on a subspace selection method that combines the multi-armed bandit (**MAB**) [31] and the ϵ -greedy strategy [32], as shown in Step 2 and 3 in Fig. 1. This method utilizes MAB to choose one of the subspaces because MAB can balance the exploration by searching other subspaces while maintaining the exploitation of the selected subspace. However, MAB will be invalid when the number of visiting subspaces is higher than a speci c value. To preserve population diversity, the method then switches to the ϵ -greedy strategy to choose a subspace according to a proposed time formula. The formula decides when to use the ϵ -greedy strategy.

At last, SPJ-GEP uses a new crossover method to make individuals jump from the original subspace to another selected subspace, as shown in Step 4 in Fig. 1. The method makes these newly selected individuals intersect with the best individual in the selected subspace so that they can start searching at the latest local optimal position.

The characteristics of SPJ-GEP indicates that classical GEPs [10 12] are a special case of SPJ-GEP when the number of subspaces k equals 1. On the other hand, if k is large enough that each subspace has only one individual, SPJ-GEP will degenerate into a random selection subspace algorithm. Therefore, k is a critical parameter in SPJ-GEP. In this paper, the range of k is decided by the population diversity and the probability of jump between subspaces. We analyze the complexity of time and space of SPJ-GEP and prove that SPJ-GEP does not signi cantly increase the time and space complexity compared with classical GEPs.

The main contributions in the paper are summarized as follows:

 We propose the SPJ-GEP algorithm, which allows individuals in a population to jump between subspaces according to the MAB and the *ϵ*-greedy strategy. This approach maintains the population diversity.

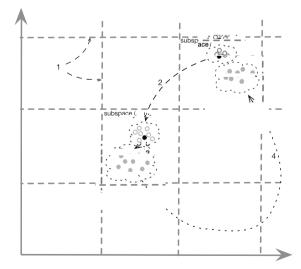
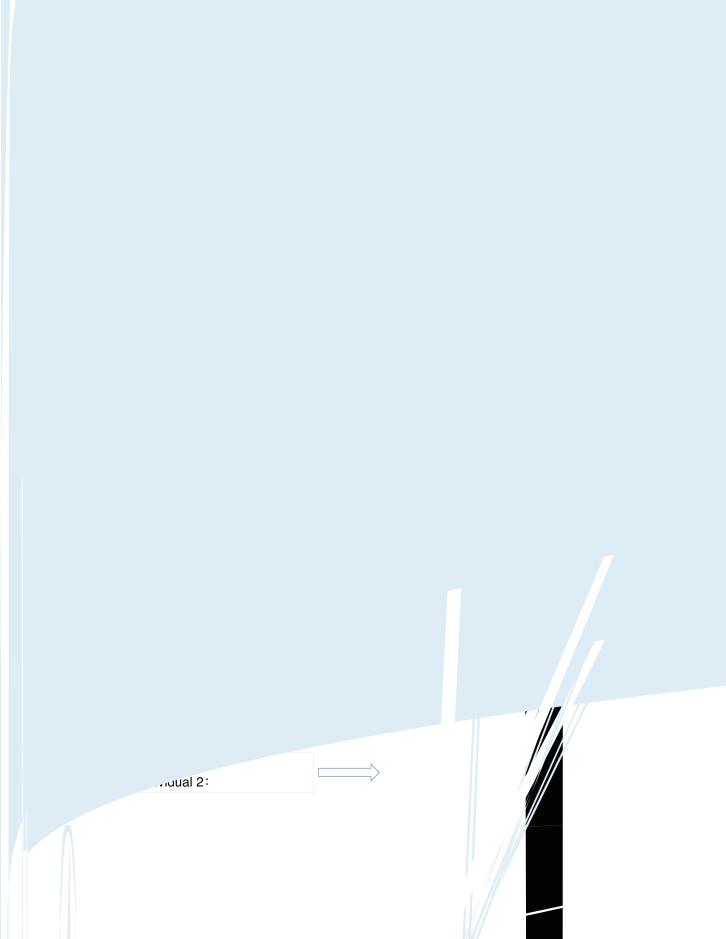


Fig. 1. The SPJ-GEP framework. Circles represent individuals, and dark circles are the best individuals in subspaces. Step 1. space segmentation; Step 2. subspace selection; Step 3. subspace exploitation; Step 4. escape from local optimum by subspace jump.



According to the coding of individuals in GEP, i.e., encoding an individual to a linear structure with the xed-length *l* and the head length *h*, the space of mathematical expression is denoted as $\Omega_{l,h} = `* \dots ** \dots *'$. *l* is the length of individuals (the total number of '*'); *h* is the head length (the number of '<u>*</u>'); '*' can be anyone symbol from a symbol set *S* that consists of a function set *F* and a terminal set *T*. In the head, if front '*'s are replaced by special symbols *s*, it can generate a **subspace** ω_s , such as $\omega_+ = `+ ***'$ in Fig. 3. Therefore, the more special symbols appear in the front of the head, the smaller the subspace's size becomes. For example, $\omega_{++} = `++ ***'$ is a subspace of ω_+ , and $\omega_{++} \subset \omega_+$.

Based on the above subspace encoding, these subspaces and their relationships can be represented as **a space-partition tree**, where the root node is $\Omega_{l,h}$, each of the other nodes is a subspace of $\Omega_{l,h}$, and a branch represents a containment relationship between two subspaces, e.g., $\omega_{++} \subset \omega_{+}$ as shown in Fig. 3. From the tree, a lot of space-partition sets can be found based on the above two conditions. For example, { $\omega_{+}, \omega_{-}, \omega_{x}$ } and { $\omega_{++}, \omega_{+-}, \omega_{+x}, \omega_{+}, \omega_{x}$ } both are space-partition sets.

3.1.2. Initialization

SPJ-GEP selects a space-partition set by the following strategy. It can easily nd the rst level *ll* where the number of nodes is equal or greater than the number of subspaces (*k*) according to $ll \ge log_{|S|}^k$, where |S| is the number of symbols. For example, in Fig. 3, if k = 5 and |S| = 3, then ll = 2. Moreover, the algorithm discovers a space-partition set $\omega_{++}, \omega_{+-}, \omega_{+x}, \omega_{-+}$.

$$UCB_{\omega_i} = \frac{1}{f_{\omega_i}^* + 1} + \lambda \sqrt{\frac{2lnt}{n_{\omega_i}}}$$
(2)

where ω_i is a subspace, $f_{\omega_i}^*$ is the tness of the best individual in ω_i , t is the number of visiting Ω until a particular time, and n_{ω_i} is the number of times that the subspace ω_i is accessed to. Then, SPJ-GEP selects the best subspace ω_i^* that has the maximal *UCB* as its exploration space.

3.2.2. Subspace selection based on ϵ -Greedy method

As visit times increase in a subspace, the size of the condence interval $(\sqrt{\frac{2lnt}{n_i}}$ in Eq. 2) decrease to zero. That means UCB_{ω_i}

falls back to a greedy method with the subspace value $(f_{\omega_i}^*)$ and becomes invalid in the balance between exploration and exploitation.

To overcome the above invalidation, SPJ-GEP uses the ϵ -greedy method [35] to select a subspace when condence intervals in most of the subspaces tend to be zero. Using Eq. 2 chooses a subspace with the probability $1 - \epsilon$; random chooses a subspace from the above with the probability ϵ .

3.2.3. The time of using the ϵ -Greedy Method

To nd out when UCB_{ω_i} (Eq. 2) loses its effect on most subspaces, SPJ-GEP uses Eq. 3 in the following Theorem 1. For example, given $k = 300, n = 100, G = 100000, \alpha = 0.1$ and $\beta = 0.8$, to choose a subspace ω_i , it uses Eq. 2 if $t < -\frac{2 \times 300 \times \ln^7}{0.01^2 \times \ln^{0.6}} \approx 4333918$, where $T = n \times G = 100 \times 10000 = 10^7$; otherwise, it uses ϵ -greedy method.

Theorem 1. Let *k* be the number of subspaces, and T be the total number of times of visiting the mathematical expressions space Ω after running SPJ-GEP. If the confidence interval $\sqrt{\frac{2\ln^i}{n_{\omega_i}}} \leq \alpha$, where $\alpha \to 0^+$, UCB_{ω_i} will lose its effect on subspace ω_i . Assuming that different n_{ω_i} is independent identically distributed (i.i.d.), and each n_{ω_i} is an exponential distribution with the parameter λ , the probability that each UCB_{ω_i} loses its effect is greater than β when the number of times that Ω is accessed to.

$$t \ge -\frac{2kln^{T}}{\alpha^{2}ln^{\beta}}.$$
(3)

Proof. According to the constant *T* and $\sqrt{\frac{2ln^T}{n_{\omega_i}}} \leq \alpha$, we have $n_{\omega_i} \geq \frac{2ln^T}{\alpha^2}$ so that UCB_{ω_i} are invalid in ω_i . Therefore, if we want to assure that the probability, which each UCB_{ω_i} loses its effect, is greater than β , i.e., $P(n_{\omega_i} \geq \frac{2ln^T}{\alpha^2}) \geq \beta$, the following equation

$$\lambda \leqslant -\frac{\alpha^2 \ln^{\beta}}{2 \ln^{T}} \tag{4}$$

must be satis ed, because

$$\begin{split} P(n_{\omega_i} \geq \frac{2\ln^7}{\alpha^2}) &= \int_{\frac{2\ln^7}{\alpha^2}}^{\infty} \lambda e^{-\lambda n_{\omega_i}} dn_{\omega_i} = e^{-\lambda \frac{2\ln^7}{\alpha^2}} \\ &\Rightarrow e^{-\lambda \frac{2\ln^7}{\alpha^2}} \geq \beta. \end{split}$$

As different n_{ω_i} is i.i.d. and each n_{ω_i} is an exponential distribution with the parameter λ , we get

$$t = E[\sum_{i=1}^{k} n_{\omega_i}] = E[E[\sum_{i=1}^{k} n_{\omega_i} | k]] = E[k]E[n_{\omega_i}] = \frac{k}{\lambda}.$$
(5)

According to formulas 4 and 5, we nally obtain formula 3.

3.3. Exploitation with crossover

Suppose that the current population is at the subspace ω_j , after SPJ-GEP selects a subspace ω_i , it makes all individuals in the population **jump** from the subspace ω_j to the subspace ω_i . As the aforementioned subspace encoding, codes of these individuals in ω_j start with the code of ω_j . So, for making them jump, it is necessary to replace their head codes with the code of ω_i . For example, given two individuals ' $\pm\pm/$ – ×*xxxxxx*' and ' $\pm\pm$ + × × *xxxxxx*' in the subspace ω_{++} , the two individuals will jump into the subspace ω_{+-} after they change to ' $\pm-$ – ×*xxxxxx*' and ' $\pm-$ + × × *xxxxxx*' by replacing '++' in their heads with the code '+-' of ' ω_{+-} '.

Then, it exploits ω_i by recombining each of the transferred individuals with the best individual in the subspace ω_i . For example, if the best individual is '<u>+-</u> × + + xxxxxx', the above two individuals '<u>+-</u> - ×xxxxxx' and '<u>+-</u> + × ×xxxxx' recom-

558

bine with the best individual, respectively. The recombination makes the jumped population start to search from the local optimal space, and speeds up the convergence.

Note that if the selected subspace ω_j is equal to ω_i , the recombination is the same as the recombination of classical GEPs [10 12] in that any two individuals in the population recombine randomly. So, if the above subspace selection continuously chooses the same subspace, SPJ-GEP will exploit the subspace persistently.

4. Analysis of SPJ-GEP

4.1. Time and space complexity

Compared with classical GEPs [33,37,38], SPJ-GEP requires additional structures to record the visiting times (n_{ω_i}) and the best tness $(f_{\omega_i}^*)$, as well as extra computation to obtain UCB_{ω_i} in each subspace. The additional time and space complexity are related to the number (k) of all subspaces. Suppose the time and space complexities for classical GEPs within g iterations are O(gep) and $\Theta(gep)$, respectively. For SPJ-GEP, they are $O(gep + g \times c \times k) = O(gep + n \times k)$ and $\Theta(gep + m \times k)$, where $n = c \times k, k > 1$, and g, c, and m are constants. Therefore, if k is within a reasonable range, its time and space complexities are acceptable. In our experimental evaluation, its running time is almost as fast as GEP's because the value of k is generally not very large (detail in Section 4.3).

4.2. Population diversity

To preserve the population diversity, SPJ-GEP always lets the population jump from one subspace to another subspace. Even if an individual in a population immediately jumps back to its original subspace after two jumps, its structure has been signi cantly changed according to the following Lemma 1.

Lemma 1. Suppose SPJ-GEP executes single-point crossovers with uniform distribution, and l is the length of an individual encoding without considering its subspace encoding. After the individual has jumped k subspaces, the similarity between the jumped individual, and the original individual is

$$sim(k) = \left(\frac{1+l}{2l}\right)^{\kappa}$$
(6)

Proof. Since the crossover point is randomly selected with uniform distribution, after a crossover, the expected length of the original fragment in the new individual is (1 + l)/2. Then, the similarity between the original individual and the jumped individual is (1 + l)/2l after one crossover. Therefore, after *k* crossovers in *k* subspaces, the similarity is $sim(k) = (\frac{1+l}{2l})^k$.

For example, if the length of an individual is 20, after jumping only two subspaces, the similarity between original and jumped individuals changes to 0.276. As k increases, sim(k) tends to be zero. Moreover, the two individuals become more different. Therefore, the subspace selection method, which lets the population jump from a subspace to another subspace, diversi es the population so that it helps prevent a local optimum in SPJ-GEP.

4.3. The number of subspaces

The number of subspaces k is a critical parameter in SPJ-GEP. If k = 1, it means that there is only one subspace in Ω . So, when the subspace is Ω , SPJ-GEP degenerates into a standard GEP. If k is large enough that there is only one individual in a subspace, each subspace is an individual. In this case, SPJ-GEP degenerates into the random initialization algorithm, randomly generating an individual (i.e., a subspace) in Ω . Therefore, if k is too large or too small, the algorithm performance will be degraded.

According to Lemma 1, the larger *k*, the smaller the similarity. Then, SPJ-GEP needs a smaller similarity to escape from the local optimum. Based on the following Theorem 2, we have the lower bound of *k*. Besides, the larger *k*, the smaller the probability that an individual jumps in its original subspace. The probability must be larger enough that SPJ-GEP can exploit a subspace continuously for a while. Otherwise, SPJ-GEP will always explore a different subspace that breaks the balance between exploration and exploitation. So, based on the following Theorem 3, we have the implicit expression of the upper bound of *k*.

Theorem 2. Suppose an individual returns to the original subspace after it jumps k subspaces, in order to guarantee the similarity between the original individual and the new back individual is less than or equal to η , the lower bound of k is $\frac{\ln^{\eta}}{\ln^{1+1}\ln^{2t}}$.

Proof. According to Eq. 6 in Lemma 1, $\left(\frac{1+l}{2l}\right)^k \leq \eta$. Then, we have

$$k \ge \frac{\ln^{\eta}}{\ln^{1+l} - \ln^{2l}} \tag{7}$$

When the running time of SPJ-SEP exceeds a speci c time, SPJ-SEP uses the ϵ -greedy strategy to select a subspace according to Theorem 1. Most of the subspaces are selected randomly. So, the jump probability P(i,j) between subspace i and j satis es a long tail distribution. Moreover, the probability that the subspace with the best UCB_{ω_i} will be selected again is $1 - \epsilon$, and the probability is higher than the probability of selecting other subspace, i.e., P(i, i) > P(i, j). If SPJ-SEP uses the best UCB_{ω_i} (MAB) to select a subspace, the same conclusions P(i, j) satis es a long tail distribution and P(i, i) > P(i, j) can be obtained through an analysis similar to the above.

Theorem 3. Suppose the jump probability P(i, j) between subspace *i* and *j* satisfies the Zipf distribution [39], in order to guarantee that $P(i, i) \ge \delta$, the number of subspace *k* satisfies the following inequality.

$$\frac{1}{\sum_{i=1}^{k} \left(\frac{1}{i}\right)^{\gamma}} \ge \delta$$
(8)

Proof. Since $P(x_{i,j})$ satis es Zipf distribution, whose probability mass function of Zipf is $f(x) = \frac{1}{x^{\gamma} \sum_{i=1}^{k} (1/i)^{\gamma}}$, where x = 1, 2, ..., k, k is the number of subspace, and γ is a parameter.

$$p(i,i) = f(1) = \frac{1}{\sum_{i=1}^{k} (1/i)^{\gamma}} \ge \delta$$
(9)

owing to f(1) > f(x) when $x \neq 1$.

Table 2 GP Problems.

For example, if $\gamma = 0$, the Zipf distribution will degenerate into a uniform distribution. According to Eq. 8, $\frac{1}{k} \ge \gamma$. So, $k \in \left[\frac{\ln^{\eta}}{\ln^{1+1}-\ln^{21}}, \frac{1}{\gamma}\right]$.

Name Formula Dataset $x^6 + x^5 + x^4 + x^3 + x^2 + x$ F1 U[-1, 1, 20] F2 $x^4 + x^3 + x^2 + x$ U[-1, 1, 20] U[-1, 1, 20] F3 $x^5 - 2x^3 + x$ F4 U[-1, 1, 20] $sin(x^2)cos(x) - 1$ F5 U[-1, 1, 20] $sin(x)+sin(x+x^2)$ F6 $ln(x+1) + ln(x^2+1)$ U[0, 2, 20] F7 2sin(x)cos(y)U[-1, 1, 100] F8 U[-50, 50, 10000] 1.57 + (24.3v)F9 $6.87 + 11\cos(7.23x^3)$ U[-50, 50, 10000] F10 U[-50, 50, 10000] $2 - 2.1\cos(9.8x)\sin(1.3w)$ F11 0.3xsin(2 - x)E[-1, 1, 0.1] F12 lnx E[1.1] U[0, 1, 100] F13 xy F14 $x^4 - x^3 + \frac{y^2}{2} - y$ U[-3, 3, 20] F15 $\frac{x^3}{5} + \frac{y^3}{2} - y - x$ U[-3, 3, 20] E[0.05, 10, 0.1] F16 $e^{-x}x^3(cosxsinx)(cosxsin^2x-1)$ U[0.3, 4, 100] F17 $\frac{e^{-(x-1)^2}}{1.2+(y-2.5)^2}$ F18 x:E[0.05, 10, 0.1] $e^{-x}x^3(cosxsinx)(cosxsin^2x-1)$ y:E[0.05, 10.05, 2] *(y - 5)F19 (x-3)(y-3)+2sin((x-4)(y-4))U[0.05, 6.05, 300] F20 $\tfrac{(x-3)^4+(y-3)^3-(y-3)}{(y-2)^4+10}$ U[0.05, 6.05, 50]

The function sets of $F_1 - F_7$, $F_8 - F_{10}$, $F_{11} - F_{15}$ and $F_{16} - F_{20}$ are from Koza [1], Korns [41], Keijzer [42] and Vladislavleva [43], respectively.

5. Experiments

5.1. Dataset and experimental parameters

In this paper, the dataset consists of 20 SR test problems that are derived from the GP benchmarks [40], as shown in Table 2. The functions and constants of the data set are shown in Table 3. To evaluate the proposed algorithm **SPJ-GEP**, we have created three algorithms SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP based on the three baseline **GEPs**: GEP [10], GEP-ADF [11], and SL-GEP [12], respectively. The three new algorithms have the same parameters as these GEPs have except for the additional parameters k, α , and β . The detailed parameters of the above six algorithms are described in Table 4.

We set the number of subspaces *k* a particular value according to the number of nodes on a speci c layer in the spacepartition tree. Since the evaluation consists of six basic benchmarks, and each basic benchmark has different function symbols and terminal symbols, SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP have different *k* values for different basic benchmarks. In Table 4, the last row shows the range of *k* is [144 1000]. For example, in the Koza basic benchmark, there is a function symbol set $\{+, -, \times, /, sin, cos, ln(|x|), e^x\}$, whose length is 8, and a terminal set $\{x_1, x_2\}$, whose length is 2. When a space-partition set is obtained by nodes on the 3rd layer in the space-partition tree, the number of the subspaces *k* is $(8 + 2)^3 = 1000$.

5.2. Verification of subspaces selection method

Looking back at the subspace selection in SPJ-GEP, Inequality 3 is a key to decide when the UCB (Eq. 2) loses its effect on selecting subspaces. To verify the accuracy and the correctness of Inequality 3, we run SPJ-GEP with different values of parameter k (100,200 and 300) on ve test problems. When $t \ge -\frac{2k\ln^7}{\alpha^2 \ln^6}$, where $T = 100000 \times 100$, such as $t \ge \frac{2 \times 100 \times \ln^{10^7}}{(0.1)^4 \times \ln^{0.8}} \approx 1444639$, the algorithm stops. Then, we sum up the number of subspaces where UCB has lost its effect according to the following Inequality

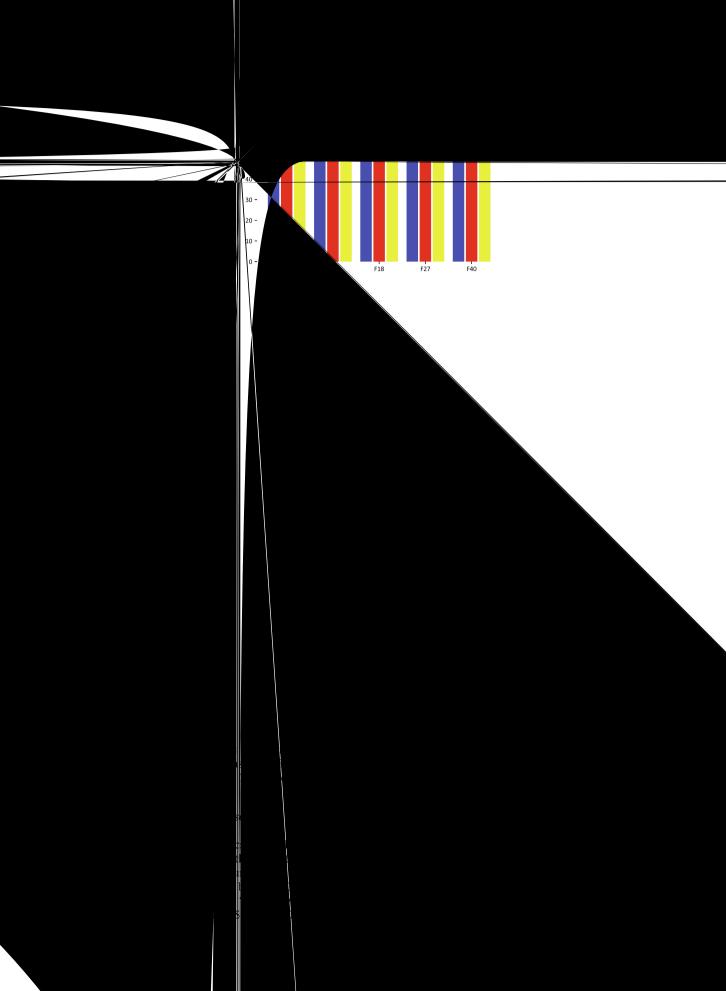
$$\sqrt{\frac{2ln^{T}}{n_{\omega_{i}}}} \leqslant \alpha \tag{10}$$

where n_{ω_i} is the number of times that the subspace ω_i is accessed to. Finally obtain the probability of subspace convergence (PSC) by Eq. 11

$$PSC = \frac{s}{k} \tag{11}$$

Table 3The Functions and Constants of Data Set.

Name	Functions	Constants(ERC)
Koza Korns	$+, -, \times, /, sin, cos, e^n, ln(n) +, -, \times, /, sin, cos, e^n, ln(n) n^2, n^3, \overline{n}$	None Random nite 64bit

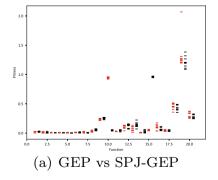


than GEP-ADF. Although SL-GEP and SPJ-SL-GEP nd the same nun average tness value than SL-GEP.

In Table 6, the results of the Wilcoxon Signed-Rank Test[44] at According to the comparative data, SPJ-GEP, SPJ-GEP-ADF, and SPJ GEP, GEP-ADF, and SL-GEP, respectively.

All best tnesses found by the above six algorithms are shown problems, the range of tness obtained by SPJ-GEP, SPJ-GEP-ADF, by GEP, GEP-ADF, or SL-GEP. These results show that SPJ-GEP can algorithms.

However, SPJ-GEP is not superior to GEP, GEP-ADF or SL-GEP i performance of GEP, GEP-ADF or SL-GEP is better than SPJ-GEP. Fo of GEP tness value both are smaller than those of SPJ-GEP tnes GEP) tness value is smaller than that of SPJ-GEP-ADF (SPJ-SL-G the mathematical expression space is split into many subspaces,



rrect results, SPJ-SL-GEP can still obtain a smaller

It considers both the average tnesses and RMSE. still obtain a better performance than the original

s in Fig. 5. The results indicate that, in most of the .-GEP is smaller than the range of tness obtained more accurate performance than the baseline GEP

e tested problems. For a few special problems, the ple, as shown in Fig. 6(a), the average and the range ; similarly, in Fig. 6(h), the range of GEP-ADF (SLat is because, from the subspace's view, although ze of each subspace is still huge so that GEP, GEP- -

0.05-

0.04-

0.03

0.02-

0.01-

0.00-

ADF, and SL-GEP may only search in one or several subspaces. Moreover, the crossover and the mutation of SPJ-GEP (SPJ-GEP-ADF or SPJ-SL-GEP) are the same as those of GEP (GEP-ADF or SL-GEP) in a subspace. Those make it possible for the baseline GEPs to nd more accurate results than these SPJ-GEP algorithms if the subspace that they search for is the target subspace in which the correct results are located.

5.4. Comparison of population diversity

Since the crossover and the mutation of SPJ-GEP are the same as those of the baseline GEPs in a subspace, what makes SPJ-GEP obtain more accurate results than these GEPs in most of the problems? It is attributed to the SPJ-GEP's ability to jump between subspaces, which maintains population diversity. To observe the population diversity, the different degree (dg) of individuals is dened by the following equation.

$$dg = \frac{D}{N} \tag{12}$$

where *N* is the number of individuals in a population, and *D* is the number of different tness values of individuals. For example, if 100 individuals generate 70 different tness values, the different degree is 0.7. Therefore, *dg* can represent the population diversity, and *dg* is computed at every 100 generations in the above algorithms. By collecting *dg* values of the above six algorithms that run in the test problem – F11, the population diversity changes of these algorithms are shown in Fig. 7.

As shown in Fig. 7, GEP, GEP-ADF, and SL-GEP have a lower level of the population diversity, while SPJ-GEP. SPJ-GEP-ADF and SPJ-SL-GEP have a higher level of the population diversity. Besides, the average amplitude of blue curves that represent these SPJ-GEPs is higher than that of black curves that represent the three baseline GEPs. Although crossover and mutation contribute to maintaining population diversity in the early stages of these GEPs running, they tend to make little differences between individuals in the later stages. However, the jump always makes signi cant differences between individuals in SPJ-GEPs, according to Lemma 1.

5.5. Convergence comparison

Fig. 8(a) and (b) illustrate that SPJ-GEPs (SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP) can obtain better results than the baseline GEPs(GEP, GEP-ADF, and SL-GEP). As the number of iterations increases, the baseline GEPs gradually fall into local optimum space. Meanwhile, owing to the low population diversity, they cannot escape from the local optimum space with a high probability. However, SPJ-GEPs can easily escape from a local optimum space because the jump between subspaces transfers individuals to different subspaces and maintains a high population diversity. Therefore, when the baseline GEPs present premature convergence, SPJ-GEPs still nd new better results even in the later stage of 100,000 generations. That demonstrates that SPJ-GEPs can always explore new subspaces with a high probability.

However, owing to the jump between subspaces and the above subspace selection method, it is dif cult for SPJ-GEPs to exploit a local space continuously in a period. Therefore, the convergence speed of SPJ-GEPs is slower than that of these base-line GEPs in the early stage of 100,000 generations. For example, in Fig. 8(a), at approximately 40,500 generations, GEP nds the best result with the tness 0.025, while SPJ-GEP nds that with 0.078.

6. Related work

Similar to our idea of space partition that maintains the population diversity in this study, a method named NrGA was proposed to use a binary space partitioning (BSP) tree. NrGA recursively subdivides space into two and stores individual visiting information, and the method is integrated with GA so that individual revisits are completely eliminated [25 27]. Although NrGA can maintain the population diversity by visiting the BSP tree, it needs a lot of additional time and space to maintain the tree. Especially for the huge space of mathematical expressions in SR, maintaining the BSP tree will become an impossible mission. However, in the paper, SPJ-GEP does not construct a space-partition tree but utilizes its abstract structure to obtain a space-partition set. Moreover, SPJ-GEP maintains population diversity by letting individuals jump between subspaces instead of eliminating revisiting individuals.

Many distributed evolutionary algorithms (dEA) use a similar idea of space partition to distribute individuals of the population to different subspaces (multiple processors or computing nodes) [28]. These dEAs can be divided into island [29] [45],

cellular [46] [30], hierarchical [47], and pool models [48]. These dEAs can increase the population diversity because their subpopulations run independently in different subspaces, and transfer their best individuals by a migration strategy. As they are distributed algorithms, they pay more attention to the communication cost and scalability and pay no attention to the subspace selection method, so that they could waste a lot of computation time on invalid subspaces.

Different from the above methods of partitioning global space, Tsutsui [49] and Huang [50] proposed two methods of local spaces that are created by the convergence status of the present population respectively. Tsutsui [49] proposed the forking GA (fGA) which divides the search space for each population into subspaces depending on the convergence status of the population and the solutions obtained so far. Then two types of fGAs (genotypic fGA and phenotypic fGA) are created to maintain population diversity by de ning two searching subspaces of each sub-populations, respectively. One is the salient schema which de nes subspaces by phenotype parameters of the present population. The other is the neighborhood hypercube which de nes the local subspaces around the current best individual in the phenotypic feature space. The forking GA can avoid the premature convergence of populations because the searching method enables the population to exploit different local subspaces. Although Huang [50] proposed a differential evolution (DE) method based on the three spaces: local space, opposition space, and global space, the three spaces are all local spaces because the global space refers to the space near the best individual in a population, and its opposition space. So, the method can accelerate convergence but cannot avoid falling into a local optimum.

7. Conclusion and future work

In the paper, we propose a novel algorithm, SPJ-GEP, to deal with the SR problem. Using the new approach that partitions the space of mathematical expressions into subspaces, SPJ-GEP guides the population effectively jump among these subspaces with a subspace selection method. SPJ-GEP maintains the population diversity while keeping the balance between subspace exploration and exploitation. Therefore, the proposed SPJ-GEP has the following advantages. SPJ-GEP can be easily embedded in other GEPs because its three key components space partition, subspace selection, and crossover, are compatible with other GEPs. As shown in the evaluation analysis, SPJ-GEP does not signi cantly increase the time and space complexity compared with classical GEPs. SPJ-GEP can overcome the problem of premature convergence and avoid falling into a local optimum.

Although SPJ-GEP surpasses the tested baseline GEPs on most benchmarks, it has two weaknesses that prevent it from quickly nding better results than the baseline GEPs on a few benchmarks. One is that SPJ-GEP does not de ne how to choose the best space-partition set from the space-partition tree. After all, the quality of the set directly affects the search results of SPJ-GEP. The other weakness is that the selected subspace may not be the subspace where the optimal result is located. In this case, the jump to these selected subspaces could result in an unreasonable search. In the future, we will address these weaknesses by quantifying these subspaces.

CRediT authorship contribution statement

Qiang Lu: Conceptualization, Methodology, Validation, Writing - original draft, Writing - review & editing. **Shuo Zhou:** Formal analysis, Data curation, Software, Visualization. **Fan Tao:** Visualization, Validation. **Jake Luo:** Writing - review & editing. **Zhiguang Wang:** Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing nancial interests or personal relationships that could have appeared to induce the work reported in this paper.

Acknowledgements

This work was supported by China National Key Research Project (No. 2019YFC0312003), National Natural Science Foundation of China (No. 61402532) and the Science Foundation of China University of Petroleum-Beijing (No. 01JB0415).

References

- John R. Koza, Genetic programming as a means for programming computers by natural selection, Stat. Comput. 4 (2) (1994) 87 112, https://doi.org/ 10.1007/BF00175355.
- [2] R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O'Neill, Grammar-based genetic programming: a survey, Genet. Program Evolvable Mach. 11 (3) (2010) 365 396.
- [3] Q. Lu, J. Ren, Z. Wang, Using genetic programming with prior formula knowledge to solve symbolic regression problem, Comput. Intell. Neurosci. 1 (2016) 1 19.
- [4] A. Moraglio, K. Krawiec, C.G. Johnson, Geometric Semantic Genetic Programming, in: Parallel Problem Solving from Nature PPSN XII, Vol. 7491, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 21 31.
- [5] Q. Chen, B. Xue, M. Zhang, Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators, IEEE Trans. Evol. Comput. 23 (3) (2019) 488 502.

- [6] M. Schmidt, H. Lipson, Comparison of tree and graph encodings as function of problem complexity, in: Proceedings of the 9th annual conference on Genetic and evolutionary computation, GECCO '07, Association for Computing Machinery, London, England, 2007, pp. 1674 1679.
- [7] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data, Science 324 (5923) (2009) 81 85. [8] J.F. Miller, S.L. Harding, Cartesian Genetic Programming, in: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary
- Computation, GECCO '08, ACM, New York, NY, USA, 2008, pp. 2701 2726. [9] I.F. Miller, Cartesian genetic programming: its status and future, Genet, Program Evolvable Mach. (2019) 1 40.
- [10] C. Ferreira, Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst. 13 (2) (2001) 87 129.
- [11] C. Ferreira, Automatically de ned functions in gene expression programming, Genetic Systems Programming, Springer, 2006, pp. 21 56. [12] J. Zhong, Y.S. Ong, W. Cai, Self-learning gene expression programming, IEEE Trans. Evol. Comput. 20 (1) (2016) 65 80, https://doi.org/10.1109/ TEVC.2015.2424410.
- [13] M.F. Brameier, W. Banzhaf, Linear genetic programming, Springer Science & Business Media, 2007.
- [14] Yee Leung, Yong Gao, Xu. Zong-Ben, Degree of population diversity: a perspective on premature convergence in genetic algorithms and its markov chain analysis, IEEE Trans. Neural Networks 8 (5) (1997) 1165 1176, https://doi.org/10.1109/72.623217.
- [15] M. Crepin ek, S.-H. Liu, M. Mernik, Exploration and Exploitation in Evolutionary Algorithms: A Survey, ACM Comput. Surv. 45 (3) (2013) 35:1 35:33. doi:10.1145/2480741.2480752..
- [16] E. Burke, S. Gustafson, G. Kendall, Diversity in genetic programming: an analysis of measures and correlation with tness, IEEE Trans. Evol. Comput. 8 (1) (2004) 47 62, https://doi.org/10.1109/TEVC.2003.819263.
- [17] D. Sudholt, The Bene ts of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses. http://arxiv.org/abs/1801.10087..
- [18] G. Karafotias, M. Hoogendoorn, A.E. Eiben, Parameter control in evolutionary algorithms: trends and challenges, IEEE Trans. Evol. Comput. 19 (2) (2015) 167 187, https://doi.org/10.1109/TEVC.2014.2308294.
- [19] R.E. Smith, E. Smuda, Adaptively resizing populations: algorithm, analysis, and rst results, Complex Systems 9 (1) (1995) 47 72.
- [20] G.R. Harik, F.G. Lobo, A Parameter-less Genetic Algorithm, in: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation -Volume 1, GECCO'99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999, pp. 258–265..
- [21] LJ. Eshelman, D.J. Schaffer, in: R.K. Belew, L.B. Booker (Eds.), Preventing premature convergence in genetic algorithms by preventing incest Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, 1991, pp. 115 122.
 - Y. Wang, Z. Cai, O. Zhang, Enhancing the search ability of differential evolution through orthogonal crossover, Inf. Sci. 185 (1) (2012) 153 177.
- [23] Sibylle D. M ller, Nicol N. Schraudolph, Petros D. Koumoutsakos, Step size adaptation in evolution strategies using reinforcement learning, in: Congress on Evolutionary Computation, Vol. 1, IEEE, 2002, pp. 151 156. doi:10.1109/CEC.2002.1006225..
- [24] K.M.S. Badran, P.I. Rockett, The Roles of Diversity Preservation and Mutation in Preventing Population Collapse in Multiobjective Genetic Programming, in: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO '07, ACM, New York, NY, USA, 2007, pp. 1551 1558, https://doi.org/10.1145/1276958.1277272.
- [25] S.Y. Yuen, C.K. Chow, A non-revisiting genetic algorithm, in: IEEE Congress on Evolutionary Computation, 2007, pp. 4583 4590. doi:10.1109/ CEC.2007.4425072..
- [26] S.Y. Yuen, C.K. Chow, A genetic algorithm that adaptively mutates and never revisits, IEEE Trans. Evol. Comput. 13 (2) (2009) 454 472, https://doi.org/ 10 1109/TEVC 2008 2003008
- [27] C.K. Chow, S.Y. Yuen, An evolutionary algorithm that makes decision based on the entire previous search history, IEEE Trans. Evol. Comput. 15 (6) (2011) 741 769, https://doi.org/10.1109/TEVC.2010.2040180.
- [28] Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, J.-J. Li, Distributed evolutionary algorithms and their models: a survey of the state-of-theart, Appl. Soft Comput. 34 (2015) 286 300, https://doi.org/10.1016/j.asoc.2015.04.061.
- [29] D. Whitley, S. Rana, R.B. Heckendorn, Island model genetic algorithms and linearly separable problems, in: D. Corne, J.L. Shapiro (Eds.), Evolutionary Computing, Lecture Notes in Computer Science, Springer, Berlin Heidelberg, 1997, pp. 109 125.
- [30] E. Alba, B. Dorronsoro, Cellular Genetic Algorithms, Operations Research/Computer Science Interfaces Series, Springer, US, 2008.
- [31] Peter Auer, Nicol Cesa-Bianchi, Paul Fischer, Finite-time analysis of the multiarmed bandit problem, Mach. Learn. 47 (2) (2002) 235 256, https://doi. org/10 1023/A·1013689704352
- [32] R. Sutton, A. Barto, Reinforcement Learning: An Introduction 2nd, MIT Press, 2018.
- [33] J. Zhong, Y.S. Ong, W. Cai, Self-learning gene expression programming, IEEE Trans. Evol. Comput. 20 (1) (2016) 65 80, https://doi.org/10.1109/ TEVC.2015.2424410.
- [34] Michael N. Katehakis, Arthur F. Veinott, The multi-armed bandit problem: decomposition and computation, Math. Operations Res. 12 (2) (1987) 262 268
- [35] Zhi-xiong Xu, Xi-liang Chen, Lei Cao, Chen-xi Li, A study of count-based exploration and bonus for reinforcement learning, International Conference on Cloud Computing and Big Data Analysis (2017) 425 429doi:10.1109/ICCCBDA.2017.7951951..
- [36] N. Cesa-Bianchi, C. Gentile, G. Lugosi, G. Neu, Boltzmann exploration done right, in: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems 30, Curran Associates Inc, 2017, pp. 6284–6293.
- [37] X. Li, W. Zhou, Chiand Xiao, P.C. Nelson, Pre x gene expression programming, Genetic and Evolutionary Computation Conf. (2005) 55 31.
- [38] Jonathan Mwaura, Ed Keedwell, Adaptive gene expression programming using a simple feedback heuristic (2009) 6.
- [39] M.W. David. Powers, Applications and explanations of zipf's law, in: Proceedings of the joint conferences on new methods in language processing and computational natural language learning, 1998, pp. 151 160..
- [40] James McDermott, David R. White, et al, Genetic programming needs better benchmarks, ACM Press (2012) 791, https://doi.org/10.1145/ 2330163.2330273.
- [41] Michael F. Korns, Accuracy in symbolic regression, in: Genetic Programming Theory and Practice IX, Springer, New York, 2011, pp. 129 151, https:// doi.org/10.1007/978-1-4614-1770-5-8.
- Maarten Keijzer, Improving symbolic regression with interval arithmetic and linear scaling, in: Genetic Programming, Vol. 2610, Springer, Berlin [42] Heidelberg, 2003, pp. 70 82. doi:10.1007/3-540-36599-0-7..
- E. Vladislavleva, G. Smits, D. den Hertog, Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming, IEEE Trans. Evol. Comput. 13 (2) (2009) 333 349, https://doi.org/10.1109/TEVC.2008.926486.
- Frank Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin 1 (2) (1994) 80 83, https://doi.org/10.2307/3001968, http://www. [44] jstor.org/stable/3001968.
- [45] F. Herrera, M. Lozano, Gradual distributed real-coded genetic algorithms, IEEE Trans. Evol. Comput. 4 (1) (2000) 43 63, https://doi.org/10.1109/ 4235.843494
- [46] D. Bernab, T. Marco, G. Mario, A. Enrique, Decentralized cellular evolutionary algorithms, in: Handbook of Bioinspired Algorithms and Applications, Chapman and Hall/CRC, 2005, pp. 121 138..
- G. Folino, C. Pizzuti, G. Spezzano, Training distributed GP ensemble with a selective algorithm based on clustering and pruning for pattern [47] classi cation, IEEE Trans. Evol. Comput. 12 (4) (2008) 458 468, https://doi.org/10.1109/TEVC.2007.906658
- [48] G. Roy, H. Lee, J.L. Welch, Y. Zhao, V. Pandey, D. Thurston, A distributed pool architecture for genetic algorithms, in: 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 1177 1184, https://doi.org/10.1109/CEC.2009.4983079.
- S. Tsutsui, Y. Fujimoto, A. Ghosh, Forking genetic algorithms: Gas with search space division schemes, Evol. Comput. 5 (1) (1997) 61 80. [49]
- W. Huang, S.-K. Oh, Z. Guo, W. Pedrycz, A space search optimization algorithm with accelerated convergence strategies, Appl. Soft Comput. 13 (12) [50] (2013) 4659 4675, https://doi.org/10.1016/j.asoc.2013.06.005.