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Abstract

In area of control, model-based robust identification is rare, and studies in presence of unknown
noise statistics are especially seldom. The robust estimation problem for time-varying Wiener output-
error systems is considered in this paper. An adaptive filtering-based recursive identification scheme is
proposed to distinguish nonlinear time-varying characteristics in complex noise environments. Firstly, a
virtual equivalent state space model is constructed to achieve adaptive Kalman filtering. In filter design,
a weighted noise estimator based on Sage-Husa principle is introduced, and is sensitive to noise changes.
Secondly, the state estimates obtained by filters are used to form the unknown intermediate variables
in information vectors. Then, a recursive estimation method based on multiple iterations is developed,
and the convergence of identification is confirmed by martingale hyperconvergence theorem. Finally, the
numerical simulation results verify the theoretical findings.
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear block-oriented models can be used to describe many nonlinear dynamic be-
haviors [1]. Three typical nonlinear block-oriented models are Wiener models, Hammerstein
models [2], and their combinations [3,4]. These types of models contain both static nonlin-
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ear blocks and linear dynamic blocks. Among them, a Wiener model has a linear dynamic
part followed by a nonlinear part [5], and it is widely encountered in engineering practices.
Some biological processes [6] and chemical processes [7] are usually modeled by Wiener
systems. Meanwhile, these processes are considered time-varying [8] because of environmen-
tal or human influence. Besides, if system physical laws are accurate sufficiently [9], the
absence of process noise is reasonable, and such systems are known as output-error systems
on system identification. Hence, this paper considers the identification of time-varying Wiener
output-error systems, and aims to grasp nonlinear and time-varying characteristics of systems.

The identification issues for Wiener systems have attracted great attention. Jvoros [10] stud-
ied the identification of Wiener models that have piecewise-linear or inverse functions of
nonlinear parts. The identification of non-invertibility nonlinear parts has been also studied
by Hu and Chen [11]. For FIR Wiener systems, Lacy and Berntein [12] exploited simultane-
ous direct estimation of non-invertible, polynomial non-linearities. From another perspective,
existing identification methods for Wiener systems are roughly divided to several categories,
e.g., blind approaches [13,14], maximum likelihood methods [15], iterative methods [16], and
recursive methods [17]. Among these methods, recursive methods are popular because they are
suitable for online identification and can be used for time-varying systems [18]. For Wiener
systems whose output nonlinear function is continuous and invertible, Ding et al. proposed
the auxiliary-model based recursive least squares algorithm [19]. Further, multiple iterations
[20-22] in recursive identification have been introduced to improve robustness of parameter
estimation in noisy environments.

Kalman filter is a widely used model-based state estimator [23-25], and is applied to
linear systems with Gaussian noise. For time-varying output-error system identification, the
stability of Kalman filter [26] has been ensured under uniform complete observability. For
Hammerstein systems [27,28], the modified Kalman smoother was derived to estimate the
unknown intermediate variables in systems. For the real-time estimation of 4WD vehicle states,
the extended Kalman filter [29] was combined with minimum error criterion. For actual fault
diagnosis of time varying systems, the adaptive Kalman filter [30] was proposed through joint
state-parameter estimation. For soft sensor maintenance, data fusion technology was introduced
based on Kalman filter [31]. However, under unknown noise statistics, estimators should be
redesigned to achieve adaptive filtering. In this respect, Sage-Husa maximum a posteriori
estimation principle [32] has been applied into Kalman filter, in order to give statistical noise
properties. Unlike Nussbaum designs [33,34] to handle non-zero-mean nonlinearities, Sage-
Husa Kalman filter can recursively estimates both mean values and variances of noise.

In this paper, a linear regression form of Wiener nonlinear systems is adopted for identi-
fication. The proposed recursive estimation is used to achieve identification of time-varying
parameters, and the idea of multiple iterations is introduced to improve robustness. Meanwhile,
the bounded convergence of time-varying systems is harvested by using martingale theorems
[35,36]. Further, to estimate the unknown intermediate variables in information vectors, a vir-
tual equivalent state space model is proposed, and an extended Kalman filter is implemented.
This adaptive Kalman filter is designed for output-error time-varying systems, and is based
on the results of [26]. Besides, Sage-Husa noise estimator is also introduced into adaptive
filtering. Thus, the recursive identification based on adaptive filtering is able to integrate state
estimation with system identification, and can provide an effective identification method for
time-varying Wiener output-error systems under complex noise environments [37].

The rest of paper is organized as follows. Section 2 gives the system description. The
adaptive filtering-based recursive estimation is exploited in Section 3. Section 4 shows main






 Whe, H {n 7dX L% /7 4nT fihe BB Ln Ingrstys (W) 130 17 1283

The assumptions (A1) and (A2) shows that stochastic noise has properties of both zero mean
and bounded variances. However, the noise can be either white or colored, and its statistical
property can be non-Gaussian and time-varying. Specifically, the noise variances (f) can
change with time. These assumptions reflect unknown noise statistics.

Assumptions 3 and 4. Define the parameter variation w(t) = 0(#) —8( — 1). Assume that
w(t) satisfies the following assumptions

E[an)w' ()] =0, # 1Bl (Hw()] =0, (A3)

E[lo@®|*] <&l — DI* < 0, < 00, (A4)

where ¢ > 0 is a very small number. That is, the parameter variation W(#) remains tiny in
B(t — 1). The assumptions illustrate that the variation is uncorrelated with ambient noise.

3. Adaptive filtering-based recursive identification

This section aims to employ a weighted gradient identification algorithm to estimate pa-
rameters. Adaptive filtering is introduced to harvest the optimal estimates of true x(?).

Referring to the works in [20], multiple iterations in recursive identification can improve
robustness of parameter estimation in noisy environments, and thus improve model accuracy.
Because of time-varying property of parameters, damping coefficients are also introduced to
cost functions. That is, different coefficients enable fast forgetting of past information, and
thus enable fast tracking of current parameter changes. Define the cost function as

1 ! -5 2
1@ =3 Y [V (0 - o 08)], 5)
J=t—m+1

where m denotes the number of samples from epoch #+ — m+ 1 to epoch t at each re-
cursion. From (5), the damping coefficients fitted by negative exponential law are se-
lected as {b"'d,, ..., b'd, d,}, where the scalar b represents attenuation speed, and
dy=(1—-0b)/1— b’") 0 < b < 1. It should be noted that the values of b and m need to be
adjusted, according to situations of parameter changes. The tradeoff between robust estimation
and change track needs to be solved. Thus, the proposed cost function can not only guarantee
robust estimation, but also keep track of parameter changes. The quadratic criterion in (5)
can be minimized by adopting the well-known Gauss-Newton technique [20]. Define

") =0 —m+1), ..., ¢,
YO =[e—m+1), ..., )], (6)
W) =d 5™ d,, ..., bd, d),

where (1) € ">PCFD and W(t) € "™ ". Then, the following equation is yielded

d
%1(9) =— TOWWIYm - 8] )

The Hessian of J(8) is given by

& T
2 O="own . ®)
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The Gauss-Newton solution of minimizing (5) can be generated by

b =60-1+ 0[-%2] Law)

6u—1) )
=60 -1+ OH'0) TOWO[YH - ©be -1,
where H(#) := T ()W (1) (t) and (?) is a sequence of positive scalar. To enhance tracking
capability of process changes, (7) is usually given by
Iy @®=y/ @-1)+1, (10)

where initial term (7)) denotes a small number specified by the designer, and y denotes
forgetting factor. In addition, to prevent H(#) from being singular, H(#) can be modified
according to Robbins-Monro [20] method

HH=Ht—-1D)+ O "OW@) &) —H@—1)). (1)

In summary, the proposed gradient-based recursive identification (RI) method is formulated

as
Gradient-based recursive identification (RI) method

Begin
1. Initialize the vectors and matrices 6(m), H (m), (m) at epoch m.
2. For t > m+ 1, implement the proposed recursive identification algorithm

®) =0t —m+1), ... 6T, (12)
Y =[ye—m+1), ..., s, (13)
Wt)=d 30"y, ..., by, dy), (14)
1/ =y/ @=1+1, (15)
Hn=Ht-)+ O "0OW@) 0)—H@-1), (16)
b =80-n+ OH' O TOWO[rH - 0fe -] a7

3. After getting é(t), the parameter estimates {f(t)}f’:l, {671(1)}1:l and {27/ (1)}’,’= | can be further
calculated. According to [21], the average method gives the following parameter estimates

A ~ 7
(o) =[ao. ... 60]. (18)
L& ) opr) b ]
4 1, 2w e B 19
tiol, = ,,Z[ an T aw 4 (19
7
o) _=[dam. b o] . (20)

where 31 (t) = 1 ensures uniqueness of the result [21].
4. Increase ¢ by 1 and go to Step 2.
End

It should be mentioned that the proposed RI method in (12)—(20) is based on multiple itera-
tions. This means that the parameter updates for epoch 7 considers multiple errors of previous
moments. Hence, this kind of “memory” ensures more accurate grasp of system characteris-
tics, and enhances robustness of identification. Actually, robustness of identification means the
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ability that can distinguish system characteristics in complex noise environments. Moreover,
in order to keep track of time-varying system characteristics, the attenuation speed b and the
length m should be selected. That is, the balance between robustness and traceability needs
to be guaranteed.

However, the difficulty in this recursive algorithm is that the information vector ¢(#)
contains unknown components x; ( —+). Hence, in this paper, an adaptive filtering method is
exploited to obtain the optimal estimates of x (7). It is well known that the extended Kalman
filter [29] has been widely used to harvest state estimates for nonlinear state space models.
For the system model (1), its equivalent state space model is constructed as following

x(t) = fisix@ — 1)+ B, "1 — 1),

¥(t) =Cx(t) + (1), (21)

where

x(0) = [, x200), ... x,0]

B i=[bit=1), bt —1), ..., bt — D],

c=I[1,0, ..., 0],

fio1 @ = 1) = [fro-n (@t = 1)), fagy (@ — 1)), ..., fpa—1)(x(t — 1))]1,

fun@@—1)=1@— 1)}2 dt — g1t —D)+x» (-1, F =1, ..., (p—1),
=1

Foun @@ = 1) = T~ 1) 1; d(t — Dgitri(t = 1)),

It should be noted that B,_1 € 7, fi_i(x(t —1)) e ? and C € '*P. The states of this
equivalent model in (21) includes true x {(#) and other virtual states x»(?), ..., x,(#). Thus, (21)
can be used for extended Kalman filtering. In addition, for unknown noise statistics, estimators
should be designed in order to achieve adaptive filtering. Here, the design approach of noise
estimator is based on the principle of Sage-Husa maximum a posteriori estimation. From (21),
Sage-Husa noise estimator [32] in the framework of Kalman is shown as below

1 < .

A =3 [0 = Cigl - 1], (22)
=1

= }Z[ezo) —CP(/l;— 1], (23)

J=1

where £(/) is the innovation, i.e., £(/) := Y(/) —Cx(y|y — 1) —F (), X(y|y — 1) € 7 is the
time update state estimate for epoch s, P(/|; — 1) € P*? is the time update error covariance
estimate for epoch /, and r (¢) and A(l) denote estimated mean values and estimated variances,
respectively. However, according to [32], (22) and (23) are only suitable to the situation where
noise prior statistics remains unchanged. If ambient noise changes rapidly and continuously,
it will cause the estimator performance to degrade significantly. Based on Sage-Husa estima-
tion, different damping coefficients are also introduced to deal with the information of noise
estimations at different moments. Since the initial epoch for adaptive filtering starts from
epoch m, the sequence length of damping coefficients should be (# — m) instead of #. The se-
quence fitted by negatlve exponential law can be selected as {b’ L N m}, where
a; m=(1— b)/(l — V™ and 0 < b<l. Hence, the weighted expressions of (22)—(23) from
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In conclusion, the adaptive filtering algorithm and the recursive identification algorithm both
start at epoch (m+ 1). That is, the relationship can be shown as below

t = m-+ 1’
=1 —1), 6¢—1) = (),

=1t —1), ¢ —1) = £¢t|1) =511
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Lemma 1 [34]. B 4;n¢ the n nng 't efhur n V() =Va@) ndihega

= D) () < imax < 00, T, (38)
whﬁrﬂnq1 den teg the Yppa b “nfl)&ﬁne y : the mplamant":ys‘t o Frx@e 4,
V() ¢ L thef Il ywing ine Wity
EV@®)—-V@E—1)<—b@), ﬂs 39)

Me nwh.le Frx(@) e ;h’h‘r Td m L, T Dls (1) s "sﬂ b() > 0. T hen, fy S’ﬁ‘ o ntly
ITeat e, t >t weh Lex() e, v limx() e, g

Assumptions 5 and 6. For the proposed RI method in (12)—(20) and any # (+ > m+ 1), there
exist o« > 0 and B > O such that the following persistent excitation condition holds

m

al < TOW@) =) [Bd) (@ —1+ DY ¢ - +1))] <L (A5)

=1
In addition, the information vector ¢(#) is bounded, i.e.,
0<ld®)I> <M < occ. (A6)
It should be noted that the assumptions (A5)—(A6) ensures system identifiability.

Theorem 1. Fr t > m+1, ¢ ng dg the pme- Tang W en o ”tp:’t-:rr rogtemn (1)-
2) The n 52y g ns ¢ the 'ss mpt. ng (Al) (A2), Tidthe p T Inee , e )
s kgpé lhé ss n’lpl ng (A3)—(A4). Fl'i'lhq-, § ng d‘w,ng the pr£ Py | malh din (]2)_

(20) the "s impr ng (AS)~(A0) 'r'ss lsr'd4ﬂ‘rw Td, thep'y "maa spm % onarr ()
b Wded nd
- n & g2 2 2\ . A
lim He(z)H2 <! o M Yo o) G4y — 6y — 0. (40)
100 a(l —y) o oo 1—v
Proof. (15) and (16) give
Ho 1- 0, . _ HGt-1)
7 = —(’) H(i—1)+ OHOW@) @) _y—(’ N + W @) (). 41
Define G(t) = H(t)/ (t). Then, we have
1
GtH)=yGt—D+ "OW@) @), G(m= o_poL o(m) = . (42)

From the definition of w(¢) and (17), ] (1) can be written as

6 =60-1)+G6 ') 7 (z)W(t)[Y(t) — b - 1)] —w@). 43)

Define (1) =[,(t —m+1),---, V(t)]T and (t)é(t -1 = f/(t), it is easy to get

Y= W0¢—-D+ @).80)=00-1)+G'@) ! (t)W(:)(—f/(:) + (:)) —w@).
(44)

Define a non-negative definite function

Vi) =6 0)G1)@). (45)
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From (44)—(45), it yields

Vi) = yVa—D =Y WD) —-W@) )G ') TOWH)Y )
+ ToOw@) OG'@) ToW@E) 1)+’ (HGH) (46)
+ 20T (W) -W@) OG'(1) TOW@) (1) 28" ¢ — HGHw(r)

—2(—177 ) + T(t))W(t) 0.

From (42), G(¢) can be written as

t—m—1

G)y=y""G(m+ Y ¥ T—0)W@t—1) (1—1). 47
=0

For t > m+ 1, (AS) gives the following inequality
PUNE S P P .- ”r oA —1 3~
I<( TNT17°~770 T’]ZS lsg(] 1707Tm( T/ 11fe 70Q ¢ 118 /8 1207T m(JIy/F 11
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Consider the set , = [é(t) (1 —=y)V({# —1) < Nmax, a.s.], and define ¢ as the comple-

mentary set of ,. Thus, forx (1) € |, there exists b(t) > 0. Applying martingale hypercon-
vergence theorem of Lemma 1, it is known that

11im6~(t) € 4, a.s. (54)

Therefore, we have

, m do>M Yo, Bo,
IimV@) < + v + . (55)
100 (I -y op (I=y)  (I-y)
Then the parameter estimation error é(t) satisfies
e & 2M 2 2
lim (e(z)H N Poy
V)Of a opo(l—=y)  a(l—y) (56)
1 m &M  yol = Bo?
— + w + w
a(l—y) o oo l—vy

This proves Theorem 1.

In Theorem 1, the assumptions (A1)—(A4) specify conditions of both noise and parame-
ter variation. The assumptions (A5) and (A6) show both persistent excitation property and
boundedness of information vectors. By assuming that the information vector ¢(¢) is known,
Theorem 1 shows the bounded convergence of time-varying Wiener output-error systems.

Corollary 1. Fr m (4) Td (34), de, qn ¢ () = (1) —g (t)e(t o VI g Ume th'7 the WV‘V
NOW ls o the 'SS mpr. ng (Al) (A2) ndthe p7 “mete y " on (.0(1) ¢ the -
sompt ng (A%)—£A4) Flthe, « ny daing the pr p ged [ F- I mah d "ot mpl ng (AS)
nd(AQ re g by, &d ie, al < T(OW@) () <pI 7d o < ||<I5(z)||2 <M< oo. Then,
the p'y “meto uml n 4rr e(l)L b Unded PdE . (40) 1 btined

Proof. The proof of this corollary is similar to the proof of Theorem 1, and is thus omitted.

Remark 2. By selecting the suitable value of b, ¥ () and A(l) of Sage-Husa noise estimator
can record noise changes correctly. The nonlinear gain K(#) is sensitive to noise changes,
and the adaptive Kalman filter in (26)—(33) can approximate the Kalman filter in [26]. In
fact, under uniform complete observability, [26] proves that the error dynamics equation of
Kalman filter is asymptotically stable for linear time-varying output-error systems. Meanwhile,
recursive identification based on the Gauss-Newton technique can provide more and more
accurate parameter estimates. Thus, with the improvement of parameter estimation accuracy,
the proposed adaptive filter based on Sage-Husa principle can provide more accurate estimate
of ¢ (#). This leads to uncorrelation between ;(1) and process data. Therefore, the conditions
of Corollary | are easy to be satisfied.

Remark 3. Both the theorem and the corollary in this paper are the extensions of convergence
results in [35] and [36]. Specifically, the asymptotic convergence of linear time-invariant
systems is given in [35], and the bounded convergence of linear time-varying systems is
obtained in [36].
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5. Numerical simulation

In this section, the time-varying Wiener output-error systems are considered for identifica-
tion. Three examples are used to demonstrate the effectiveness of proposed AF-RI method.
Meanwhile, by replacing unknown x(# —+) in ¢(#) with measurements Y(t —: ), the proposed
RI method in (12)—(20) is also implemented. These two identification methods are used to
illustrate the following aspects: (i) the effectiveness of proposed recursive identification; (ii)
the better performance of AF-RI method; (iii) the effectiveness of dealing with unknown noise
statistics. Here, the same system structure is used for examples 1 and 2, and it is taken the
following form

2 3 2
=Y T =1 dt— Dgiti(t =)+ Y b0 — 1 %a — ), (57)
=1 =1 =1
A1) =x1(1) + (1), (58)
0¢) =1 T(), 2(), d@), dt), d(t), by (1), L) , (59)

where the vector [g, ()t —1)), g2(X(t —¢)), £3(»(* —+))]' contains nonlinear basis func-
tions, and the vector 6(#) denotes the parameters of system. In simulation tests, the atten-
uation speed b= b= 0.9, the sample number m=20, and the
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1 i T T T T T T

\ — Results by AE-RLmetharl. \

‘ ——— Results by RI method ‘
§038
8
=y
& 0.6
i i o 5o -
E & j {l 1 } } 1 :S'Il ! i i
F'G"L.’lw , ! " ] [ -k a |

Fig. 4. The relative estimation error of parameters in Situation 1 of Example 1.

1) The relative estimation errors are fluctuating.
ii) AF-RI method can generate more accurate estimations of system parameters.
iii) AF-RI method generates the more accurate model to track time-varying system.

Situation 2. Consider the following slow time-varying Wiener output-error system
2

2

310 =3 Tt =) + danti(t —0) + de @1 —)I+ Y b, M1 — ), (64)
=1 J’=1

A1) =x1(1) + 1 (@), (65)

0=1[7 % b1 b b, b, df
0.25 + 0.0001 = ¢
0.28 + 0.0001 = ¢
—0.3 —0.0001 * ¢

= 1.0 + 0.0001 ¢

1.0

—0.540.0001 % #

| —0.3317 +0.0002 #1 |

(66)

where the parameters to be identified change slowly and linearly. In order to ensure uniqueness
of identification, the parameter @ of nonlinear part is equal to 1, and does not participate in
identification. The inputs {%(#)} are taken as persistent excitation signals with zero mean and
unit variance, and the noise {1 ()} remains same as in (63). Thus, the assumptions (A1)—~(A4)
are approx1mately satisfied. With L = 2000, RI and AF-RI methods are applied to estimate
parameters { |, o, by, by, &, &}. The performances of tracking time-varying parameters
are shown in Figs. 5-6. From the figures, the following conclusions are got

i) The tracking performances of {‘7, ';, by, by} of linear part are poor by RI method.
ii) The convergence speed of {&, &} of nonlinear part is slow by RI method.
iii) The convergence speed of parameter estimation is faster by AF-RI method.
iv) The better performances of tracking time-varying parameters are got by AF-RI method.
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Fig. 5. The performances of tracking time-varying parameters by RI method.

Fig. 6. The performances of tracking time-varying parameters by AF-RI method.

Example 2. In this example, robustness of identification is tested under different noise en-
vironments. The system structure adopts the same form described in (64)—(66). Both RI and
AF-RI methods are applied into identification. The inputs {¥)} are taken as persistent ex-
citation signals with zero mean and unit variance. Besides, the following root mean square
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Table 1

Mean values and standard deviations of RMSE under colored impulsive
noise.

Noise Algorithms RMSE

2@ RI 0.4714 £+ 0.0071

AF-RI 0.1937 + 0.0064

error (RMSE) index is taken to evaluate robustness

L

RMSE= | > (c1(t) — 51))°/L, ©7)

1=1

where x| (t) denotes the actual noise-free output,
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Table 2
Mean values and standard deviations of RMSE under noise with time-
varying variances.

Noise Algorithms RMSE1
3@ RI 0.6239 + 0.0201
AF-RI 0.3469 + 0.0305
Q) RI 0.6613 + 0.0198
AF-RI 0.4004 + 0.0464
v (1) RI 0.8288 + 0.0348
AF-RI 0.5054 + 0.0606
w(®) RI 0.9739 + 0.0198
AF-RI 0.6135 + 0.0570
1.8 T T T T T T T T
— Results F
L6 ===Result~

Fig. 7. The changing process of RMSE index

(1) =@ + x1)sin(2m f11) + 4 2 Sin (27 fot ) -

where o |
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proposes AF-RI method to achieve robust identification for time-varying Wiener output-error
systems. Meanwhile, this paper tries to solve the problems below.

« The appropriate attenuation speed determines the sensitivity of proposed Sage-Husa Kalman
filter, and the sensitive filter can keep track of noise changes.

« The virtual equivalent state space model is constructed to implement adaptive filtering.

« The unknown variables in information vectors are associated with optimal state estimates.

o The bounded convergence for time-varying nonlinear systems is exploited.

The proposed adaptive filtering-based recursive method can also be extended to the iden-
tification of other time-varying nonlinear systems under unknown noise statistics.
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