ORIGINAL ARTICLE

GMM discriminant analysis with noisy label for each class

Jian-wei Liu¹ · Zheng-ping Ren¹ · Run-kun Lu¹ · Xiong-lin Luo¹

Received: 8 June 2019/Accepted: 13 May 2020/Published online: 1 June 2020 © Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract

Keywords , r r r r

1 Introduction

K) fr r . . .

r _ r_ _

_ r_ / _ _ f_ r _ [2,2,2. r , r**f** ____ r r _ r_ / _ _ (_ r - r [ff , r rr r r f _ r_ , _ r_ / _ r

1.1.1 Description of the problem with the noise labels

 $\mathbf{x} = (x_1, ..., x_d) \in \mathcal{X}, \quad \mathcal{X} = \mathcal{R}^d$ $\Omega = \{\omega_1, \omega_2, \dots, \omega_K\}.$ \mathbf{r} $\mathbf{x} \in \mathcal{X}$ \mathbf{r} , - $\mathbf{f} p(\mathbf{x}|\omega)$ r \mathbf{r} \mathbf{r} $p(\omega), \ \omega \in \Omega.$ $f \ , \quad r_- \qquad r_- \ , \qquad r_- \ . \qquad r_- \ .$ \mathcal{S}_{ω} f r $\omega \in \Omega$ $egin{aligned} \mathcal{S}_{\omega} & \mathbf{f} & \mathbf{r} & \omega \in \Omega \ \mathcal{S}_{\omega} &= \{\mathbf{x} \in \mathcal{X}\}, \; \omega \in \Omega \; ; \; \mathcal{S} = \ & \mathcal{S}_{\omega}, \; |\mathcal{S}| = \ \end{aligned}$ $\omega \in \Omega$ $\omega \in \Omega$ r $|\mathcal{S}|$ $|\mathcal{S}_{\omega}|$ \mathcal{S}_{ω} . \mathbf{f} $\mathbf{$,-_ L_{ω} _ . . . 1 X . $p(\mathbf{x}|\omega)p(\omega), \quad (\omega \in \Omega),$ \mathbf{f} . $1/|\mathcal{S}_{\omega}|$, f r $\omega \in \Omega$ f ... \mathbf{r} $\mathbf{x} \in \mathcal{S}$... \mathbf{r} , \mathbf{r} $\mathbf{r} \mathbf{x} \in \mathcal{S}, \quad \mathbf{r} \quad \mathbf{r} \quad \mathbf{r}$ $\mathbf{ff} \mathbf{r} \mathbf{fr} \quad \mathbf{r} \quad \boldsymbol{\omega}.$ $ilde{\omega}\in\Omega,$ ω. , ff r \mathbf{fr} \mathbf{r} \mathbf{r} ω . $p(\omega|\tilde{\omega})$. r . f r ω . . r $\tilde{p}(\mathbf{x}|\tilde{\omega}) = p(\mathbf{x}|\omega)p(\omega|\tilde{\omega}), \mathbf{x} \in \mathcal{X}, \ \tilde{\omega} \in \Omega,$

 $ilde{\omega} \in \Omega$ r . r , fr .

1.1.2 Gaussian mixture model

$$\begin{array}{l} \mathbf{X} \\ \omega \in \Omega \\ \Rightarrow \lambda_{G_1} = & \mathbf{X} \\ \sum_{\omega \in \Omega} \mathbf{p}(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega} = 1 \\ \Rightarrow \lambda_{G_1} = & \mathbf{X} \\ \sum_{\omega \in \Omega} \mathbf{p}(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega} - 1. \\ \\ \lambda_{G_1} = & \mathbf{X} \\ \sum_{\omega \in \Omega} \mathbf{p}(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega} - 1. \\ \\ \lambda_{G_1} = & \mathbf{X} \\ \sum_{\omega \in \Omega} \mathbf{p}(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega} \\ = & \mathbf{p}(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega} \\ = & \mathbf{p}(\omega|\mathbf{x},\tilde{\omega}) \\ = & \mathbf{p}(\omega|\mathbf{x},\tilde{\omega}) \\ \\ \mathbf{p}(\mathbf{x}|\omega,\theta_{\omega}) = & \mathbf{p} \\ \sum_{m \in \mathcal{M}} \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} \\ = & \mathbf{X} \\ \sum_{m \in \mathcal{M}} \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} \\ = & \mathbf{X} \\ \sum_{m \in \mathcal{M}} \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} \\ = & \mathbf{X} \\ \sum_{m \in \mathcal{M}} \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} \\ = & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{h}_{\omega,m} \\ = & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{h}_{\omega,m} \\ \mathbf{x} & \mathbf{y} \\ = & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{h}_{\omega,m} \\ = & \mathbf{x} \\ \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{h}_{\omega,m} + \mathbf{y} \\ = & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{h}_{\omega,m} - \mathbf{h}_{\omega,m} \\ = & \mathbf{x} \\ = & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{h}_{\omega,m} - \mathbf{h}_{\omega,m} \\ = & \mathbf{x} \\ = & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{h}_{\omega,m} - \mathbf{h}_{\omega,m} \\ = & \mathbf{x} \\ = & \mathbf{x} \\ \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} + \mathbf{e}^{-(1+\lambda_{G_2})} \\ \Rightarrow & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} + \mathbf{e}^{-(1+\lambda_{G_2})} \\ \Rightarrow & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{e}^{-(1+\lambda_{G_2})} \\ \Rightarrow & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{e}^{-(1+\lambda_{G_2})} \\ \Rightarrow & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{e}^{-(1+\lambda_{G_2})} \\ \Rightarrow & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{e}^{-(1+\lambda_{G_2})} \\ \Rightarrow & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{e}^{-(1+\lambda_{G_2})} \\ \Rightarrow & \mathbf{h}_{\omega,m} & \mathbf{w}_{\omega,m}\mathbf{g} \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - \mathbf{e}^{-(1+\lambda_{G_2})} \\ \Rightarrow & \mathbf{h}_$$

1.1.3 Updating

. \mathbf{r}_{r} \mathbf{f} $\mathbf{\mu}_{\omega,m}$ 1 rl 00000 .002.000f) \mathbf{f} () -1(10 f00 00

$$\begin{split} & \frac{Q}{\Sigma_{\omega,m}} = -\frac{X}{\omega \in \Omega} \quad X \\ & \frac{1}{N} \sum_{\substack{\alpha \in \Omega \\ n}}^{-1} - \sum_{-m}^{-1} \mathbf{x} - \mathbf{\mu}_{\omega,m} \quad \mathbf{x} - \mathbf{\mu}_{\omega,m} \quad \mathbf{T} \sum_{-m}^{-1} \mathbf{n} = 0 \Rightarrow \Sigma_{\omega,m} \\ & - \mathbf{p} \\ & = \frac{-\omega \in \Omega}{0} \frac{I(\tilde{\omega} = \omega)}{\omega \in \Omega} \frac{\mathbf{p}}{N} \sum_{\mathbf{x} \in \mathcal{S}} P(\omega | \mathbf{x}_0 \tilde{\omega}) \quad \mathbf{r}(m | \mathbf{x}, \omega) \quad \mathbf{x} - \mathbf{\mu}_{\omega,m} \quad \mathbf{x} - \mathbf{\mu}_{\omega,m} \quad \mathbf{r} \\ & - \mathbf{p} \\ & = \frac{-\omega \in \Omega}{0} \frac{I(\tilde{\omega} = \omega)}{\omega \in \Omega} \sum_{\mathbf{x} \in \mathcal{S}} P(\omega | \mathbf{x}_0 \tilde{\omega}) \quad \mathbf{r}(m | \mathbf{x}, \omega) \quad \mathbf{x} - \mathbf{\mu}_{\omega,m} \quad \mathbf{x} - \mathbf{\mu}_{\omega,m} \quad \mathbf{r} \\ & - \mathbf{p} \\ & = \frac{-\omega \in \Omega}{0} \frac{I(\tilde{\omega} = \omega)}{\omega \in \Omega} \sum_{\mathbf{x} \in \mathcal{S}} P(\omega | \mathbf{x}_0 \tilde{\omega}) \quad \mathbf{r}(m | \mathbf{x}, \omega) \quad \mathbf{r} \\ & - \mathbf{p} \\ & = \frac{-\omega \in \Omega}{0} \sum_{\mathbf{x} \in \mathcal{S}} \sum_{\mathbf{x} \in \mathcal{S}} \sum_{\mathbf{x} \in \mathcal{S}} P(\omega | \mathbf{x}_0 \tilde{\omega}) \quad \mathbf{r} \\ & - \mathbf{p} \\ & = \frac{-\omega \in \Omega}{0} \sum_{\mathbf{x} \in \mathcal{S}} \sum_{\mathbf$$

 \mathbf{r}_{-} \mathbf{f} $Q_{\gamma_{ ilde{\omega},\omega}}$.r. $\gamma_{ ilde{\omega},\omega}$,

fr,

r_

$$\frac{Q_{\gamma_{\tilde{\omega},\omega}}}{\gamma_{\tilde{\omega},\omega}} = \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} p(\omega|\mathbf{x}, \tilde{\omega}) \frac{1}{\gamma_{\tilde{\omega},\omega}} - \lambda_{\gamma_{\tilde{\omega},\omega}} = 0$$

$$\Rightarrow \lambda_{\gamma_{\tilde{\omega},\omega}} P p(\omega|\mathbf{x}, \tilde{\omega})$$

$$\stackrel{\Gamma}{\Rightarrow} \lambda_{\gamma_{\tilde{\omega},\omega}} P \gamma_{\tilde{\omega},\omega} = \lambda_{\gamma_{\tilde{\omega},\omega}}$$

$$= \frac{P}{\mathbf{x} \in \mathcal{S}} \frac{P}{\tilde{\omega} \in \Omega} p(\omega|\mathbf{x}, \tilde{\omega})$$

$$\stackrel{\Gamma}{\Rightarrow} \lambda_{\gamma_{\tilde{\omega},\omega}} P \gamma_{\tilde{\omega},\omega} = \lambda_{\gamma_{\tilde{\omega},\omega}}$$

$$= \frac{P}{\mathbf{x} \in \mathcal{S}} \frac{P}{\tilde{\omega} \in \Omega} p(\omega|\mathbf{x}, \tilde{\omega})$$

$$\stackrel{\Gamma}{\Rightarrow} \frac{P}{\mathbf{x} \in \mathcal{S}} \frac{P}{\tilde{\omega} \in \Omega} p(\omega|\mathbf{x}, \tilde{\omega})$$

$$\stackrel{\Gamma}{\Rightarrow} \frac{P}{\tilde{\omega}$$

$$L' - L = \frac{\mathbf{X}}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \mathbf{X} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \cdot \frac{p'(\mathbf{x}|\omega)p'(\omega|\psi(\mathbf{x}))}{p(\mathbf{x}|\omega)p(\omega|\psi(\mathbf{x}))} + \frac{1}{|\mathcal{S}|} \mathbf{X} \mathbf{X} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \cdot \frac{q(\omega|\mathbf{x}, \psi(\mathbf{x}))}{q'(\omega|\mathbf{x}, \psi(\mathbf{x}))}.$$
(2

$$I(q, q') = \frac{\mathbf{X}}{\sum_{\omega \in \Omega} q(\omega | \mathbf{x}, \psi(\mathbf{x}))} \cdot \frac{q(\omega | \mathbf{x}, \psi(\mathbf{x}))}{q'(\omega | \mathbf{x}, \psi(\mathbf{x}))} \ge 0, \qquad (2)$$

$$L' - L \ge \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} \frac{\mathbf{X}}{\omega \in \Omega} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \quad \frac{p'(\mathbf{x} | \omega) p'(\omega | \psi(\mathbf{x}))}{p(\mathbf{x} | \omega) p(\omega | \psi(\mathbf{x}))}$$
(2

$$L' - L \ge \frac{\mathbf{X}}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \cdot \frac{p'(\mathbf{x} | \omega)}{p(\mathbf{x} | \omega)} + \frac{\mathbf{X}}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \cdot \frac{p'(\omega | \psi(\mathbf{x}))}{p(\omega | \psi(\mathbf{x}))} \ge 0.$$

 \mathbf{r} , \mathbf{r} $\mathbf{x} \in \mathcal{S}$. \mathbf{r} $\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}$

$$L' - L = \frac{X}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \frac{X}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \cdot \frac{p'(\mathbf{x} | \omega)}{p(\mathbf{x} | \omega)} + \frac{X}{\tilde{\omega} \in \Omega} \frac{|\mathcal{S}_{\tilde{\omega}}|}{|\mathcal{S}|} \frac{X}{\omega \in \Omega} \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{X}{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}} q(\omega | \mathbf{x}, \tilde{\omega}) \cdot \frac{p'(\omega | \tilde{\omega})}{p(\omega | \tilde{\omega})}.$$

$$(2.)$$

$$p'(\omega|\tilde{\omega}) = \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}} q(\omega|\mathbf{x}, \tilde{\omega}), \ \omega \in \Omega, \ \tilde{\omega} \in \Omega$$

$$(2)$$

$$p'(\cdot|\omega) = \mathbf{r} \cdot \frac{1}{p(\cdot|\omega)} \frac{\mathbf{X}}{|\mathcal{S}|} \mathbf{x} = \mathbf{x} \cdot \mathbf{x} = \mathbf{x} = \mathbf{x} \cdot \mathbf{x} = \mathbf{x$$

$$\omega \in \Omega,$$
 (2)

$$\frac{\mathbf{X}}{\omega \in \Omega} p'(\omega | \tilde{\omega}) \quad \frac{p'(\omega | \tilde{\omega})}{p(\omega | \tilde{\omega})} \ge 0, \, \tilde{\omega} \in \Omega, \tag{0}$$

$$\frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \quad p'(\mathbf{x} | \omega)$$

$$\begin{split} & \overline{|\mathcal{S}|} \underset{\mathbf{x} \in \mathcal{S}}{q(\omega|\mathbf{x}, \psi(\mathbf{x}))} & . & p(\mathbf{x}|\omega) \\ & & \geq \frac{1}{|\mathcal{S}|} \underset{\mathbf{x} \in \mathcal{S}}{X} q(\omega|\mathbf{x}, \psi(\mathbf{x})) & . & p(\mathbf{x}|\omega), \omega \in \Omega, \end{split}$$

$$\frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \quad \frac{p'(\mathbf{x} | \omega)}{p(\mathbf{x} | \omega)} \ge 0, \omega \in \Omega. \tag{1}$$

2.1.1 Gaussian Classes with Noisy Labels

$$p(\mathbf{x}|\omega) = f(\mathbf{x}|\mathbf{\mu}_{\omega}, \mathbf{\Sigma}_{\omega}), \ \omega \in \Omega, \tag{2}$$

$$p(\mathbf{x}|\omega) = f(\mathbf{x}|\mathbf{\mu}_{\omega}, \mathbf{\Sigma}_{\omega}), \ \omega \in \Omega,$$

$$\mathbf{r} \quad . \ (2) \quad \mathbf{r} \quad \mathbf{f} \mathbf{r}$$

$$\mathbf{n} \quad \mathbf{n} \quad \mathbf{n$$

$$\omega \in \Omega.$$

 $+\frac{X}{\frac{|\mathcal{S}_{\tilde{\omega}}|}{|\mathcal{S}|}} \frac{X}{|\mathcal{S}_{\tilde{\omega}}|} \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{X}{|\mathcal{S}_{\tilde{\omega}}|} \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{X}{|\mathcal{S}_{\tilde{\omega}}|} q(\omega|\mathbf{x},\tilde{\omega}) - \frac{p'(\omega|\tilde{\omega})}{p(\omega|\tilde{\omega})}. \qquad \mathbf{f} \qquad \mathbf{f}$

$$\hat{\mu}$$

$$|S|_{x \in S} \qquad |S|_{x \in S} \qquad$$

$$\mathcal{S} = q(\mathbf{x})$$
 $\mathbf{r} = \mathbf{f}\mathbf{r}$, $\mathbf{f} = \mathbf{x} \in \mathcal{S}$

(2)
$$q(\mathbf{x}) = \frac{N(\mathbf{x})}{|\mathcal{S}|}, \frac{X}{\mathbf{x} \in \mathcal{X}} q(\mathbf{x}) = 1, (\mathbf{x} \notin \mathcal{S} \Rightarrow q(\mathbf{x}) = 0),$$

()

$$r$$
 $f = [2]$. $(f = f(-1), f(-1), f(-1), f(-1)$

$$\mathbf{\mu}_{\omega}' = \frac{1}{\mathbf{x} \in \mathcal{S}} \frac{1}{q(\omega | \mathbf{x}, \psi(\mathbf{x}))} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \mathbf{x}, \tag{}$$

$$\begin{split} \boldsymbol{\Sigma}_{\omega}' &= \frac{1}{\mathbf{x} \in \mathcal{S}} \frac{1}{q(\omega|\mathbf{x}, \boldsymbol{\psi}(\mathbf{x}))} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega|\mathbf{x}, \boldsymbol{\psi}(\mathbf{x})) \mathbf{x} \mathbf{x}^T \\ &- \boldsymbol{\mu}_{\omega}' \boldsymbol{\mu}_{\omega}'^T, \quad \omega \in \Omega. \end{split} \tag{()}$$

, r f r r ____

2.1.2 Class-conditional Gaussian Mixtures with Noisy Labels

$$L = \frac{1}{|\mathcal{S}|} X \qquad X X p(\omega|\psi(\mathbf{x})) w_{m\omega} f(\mathbf{x}|\mathbf{\mu}_{m\omega}, \mathbf{\Sigma}_{m\omega}) .$$

f r

 $h(m, \omega | \mathbf{x}, \psi(\mathbf{x}))$

$$= \mathbf{P} \underbrace{\mathbf{P}^{p(\omega|\psi(\mathbf{x}))w_{m\omega}f(\mathbf{x}|\mathbf{\mu}_{m\omega}, \boldsymbol{\Sigma}_{m\omega})}_{m \in \mathcal{M}_{\omega}p(\omega|\psi(\mathbf{x})) \ w_{m\omega}f(\mathbf{x}|\mathbf{\mu}_{m\omega}}_{m\omega}}$$

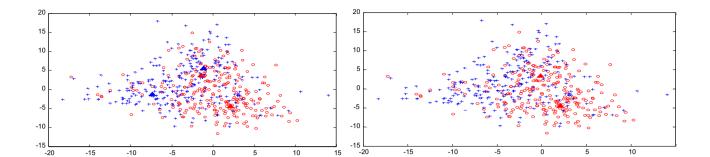
 $\mathbf{r}_{...}$, $\mathbf{r}_{...}$,

$$p'(\omega|\tilde{\omega}) = \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \underset{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}}{\times} h(m, \omega|\mathbf{x}, \tilde{\omega}), \omega \in \Omega, \ \tilde{\omega} \in \Omega.$$

$$w'_{m\omega}$$
 , f

$$\begin{split} w'_{m\omega} &= \frac{1}{|\mathcal{S}|} \frac{X}{\mathbf{x} \in \mathcal{S}} h(m|\omega, \mathbf{x}, \psi(\mathbf{x})) \\ &= \frac{1}{|\mathcal{S}|} \frac{X}{\mathbf{x} \in \mathcal{S}} \mathbf{P} \frac{h(m, \omega|\mathbf{x}, \psi(\mathbf{x}))}{m \in \mathcal{M}_{\omega}, h(m, \omega|\mathbf{x}, \psi(\mathbf{x}))} \quad m \in \mathcal{M}_{\omega}, \omega \in \Omega, \end{split}$$

3 Related work


Table 1 r r f

	r r_		
1	2000	0	
2	1000	2	2
r	10		
r_	1 0		
	1	1	
r	2	22	2
	0	1	2
fr	000	21	

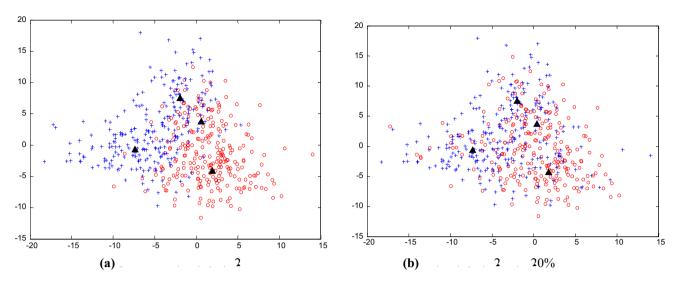
r f r r f r f r

r, r, r, r rr r r r refr , r r - fr . r. . . , r r f

 \mathbf{r} , \mathbf{r} \mathbf{r} , \mathbf{r}

4 Experiments and discussion

r, rrrrr



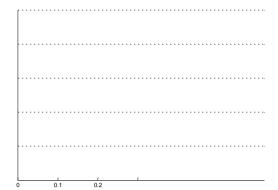

Fig. 5 2 _ _ r r _ r _ r

Table 2 2, r (%) r rr r r 2 [0. 0. 00] 1 2. e - 01 .00 0 - 02 20% [0. 101 0. 12. 0 0. 2 0.21 rr r 0.1 0. 02

ff ff r fr 20 ff f rr r r rf r0% 20% rr r r rr r r , r $\gamma_{ij}(i=j)$ 20% rr r. 2 r 1, r 0., 20% rr r

r. r

Table 3	r	rrrr _ffr	1	•	_ r		r -	Table 4 r	r	rrrr _ffr		r_	_ 1		r -
			r_	-	r						r.	_	r		
		0	0.1	0.2	0.	0.	0.			0	0.1	0.2	0.	0.	0.
1		0.0	0.0	0.0 1	0.0	0.11	0.22	1		0.0	0.0	0.0	0.1	0.211	0.221
	r	0.0	0.0	0.0	0.0	0.0	0.0		r	0.0	0.0	0.0	0.0	0.0	0.
		0.005	0.003	0.003	0.003	0.030	0.003			0.005	0.005	0.005	0.005	0.026	0.191
2	r	0.1 2	0.1	0.1	0.1	0. 0	0. 0	2	r	0.1 2	0.1	0.1	0.1	0.1 2	_
	r	0.1	0.1	0.1	0.1	0.186	0. 0		r	0.1	0.1	0.1 2	0.1	0.2	_
		0.1 2	0.1	0.1 2	0.1	0.22	0. 1			0.1 2	0.1 2	0.2	0.	0.	_
	r	0.1	0.1	0.1	0.2	0. 2	0. 2		r	0.1	0.128	0.1	0.1	0.1	0.504
		0.128	0.120	0.126	0.166	0.1	0.182			0.128	0.128	0.132	0.13	0.144	0. 2
,		0.	0.	0. 1	0. 2	0. 1	0. 1	r		0.	0.	0.	0.	0. 2	0. 0
r	r	0.305	0. 0	0.357	0.	0. 0	0. 2	,	r	0.305	0.238	0.2	0.	0. 2	0.
		0.	0.238	0.357	0.357	0.500	0.504			0.	0.2 1	0.214	0.25	0.404	0.415
r_		0.02	0.0	0.1	0.200	0.	0.2	r_		0.02	0.01	0.1	0.1	0.	-
	r	0.02	0.0	0.033	0.0	0.100	0.08		r	0.02	0.016	0.016	0.022	0.033	-
		0.013	0.016	0.033	0.05	0.083	0.08			0.013	0.016	0.016	0.022	0.033	-
		0.0	0.12	0.112	0.1	0.2	0. 0			0.0	0.1 0	0.112	0.1	0. 0	-
	r	0.0	0.011	0.044	0.0	0.044	0.0		r	0.0	0.0	0.0	0.042	0.056	_
		0.033	0.022	0.044	0.033	0.0	0.076			0.033	0.042	0.042	0.042	0.056	_
r	r	0.	0.	0. 1	0.	0.	0.	r	r	0.	0.	0.	0.	0. 00	_
	r	0.	0.	0. 2	0.	0.	0.		r	0.	0. 20	0. 11	0.	0. 2	-
		0.2 0	0.261	0.2	0.	0. 2	0.			0.2 0	0.2	0. 0	0. 2	0. 1	-
	r	0. 0	0. 2	0. 0	0.	0.	0.		r	0. 0	0.	0.2 1	0.	0. 2	-
		0.248	0.261	0.261	0.289	0.287	0.271			0.248	0.261	0.261	0.261	0.327	_
	r	0.130	0.1	0.12	0.1	0.	0. 1		r	0.130	0.163	0.173	0.178	0.1	0.
	r	0.130	0.183	0.113	0.1	0. 1	0.		r	0.130	0.163	0.1	0.1	0.1	0.
		0.1	0.1	0.1	0.183	0.2 2	0.			0.1	0.1	0.2 2	0. 1	0.	0. 2
	r	0.2	0.1	0.1	0.1	0.	0. 1		r	0.2	0.1	0.1	0.1	0.	0.2
		0.20	0.183	0.1	0.183	0.188	0.185			0.20	0.1	0.1	0.1	0.163	0.221
		0.188	0.201	0.223	0.223	0.2 0	0. 12			0.188	0.196	0.2	0.	0. 0	_
fr	r	0.2	0.2	0.2	0.2 1	0.2 2	0.2	fr	r	0.2	0.2	0.2 1	0.	0. 00	_
		0.222	0.22	0.2 1	0.2 2	0.244	0.244			0.222	0.22	0.226	0.280	0.296	_
-	rf r	r .							rf r	r _					

Table 5 / r /

		_ / r /				
		r.	r_			
1		0/0/	0/0/			
	r	0/0/	0/0/			
		/0/0	/0/0			
2	r	0/0/	0/0/			
	r	1/0/	0/0/			
		0/0/	0/0/			
	r	0/0/	1/1/			
		/0/1	/1/1			
r		0/0/	0/0/			
,	r	1/1/	2/0/			
		/1/1	/0/2			
r_		0/0/	0/0/			
	r	0/ /	0/ /1			
		/ /0	1/ /0			
		0/0/	0/0/			
	r	1/2/	0/2/			
		/2/1	/2/0			
r	r	0/0/	0/0/			
	r	0/0/	0/0/			
		0/1/	0/0/			
	r	0/0/	0/0/			
		/1/0	/0/0			
	r	1/1/	1/2/			
	r	1/1/	1/2/			
		0/1/	0/0/			
	r	0/0/	0/0/			
		2/1/	2/0/			
fr		/0/2	2/0/			
	r	0/0/	0/0/			
		2/0/	/0/2			

5 Experimental results on large-scale datasets

 $\mathbf{r}_{-}\mathbf{f}$ rf r \mathbf{f} , \mathbf{r} \mathbf{r} . r r ff 1,000 200 , r fr r 1 r fr r . fr 0 20, rr fr , r, fr f , f , rr_ 0%, 10%, 20%, 0%, 0%, 0% **f** , 10, , (1), (1), (1), r r r rr _ .r , (2),(2),r_ rr r r .r. . ..r 11 r. rfr fr r rf r (2), (2), (2) r rr .r , 11, r , r f () _ r

_ r _

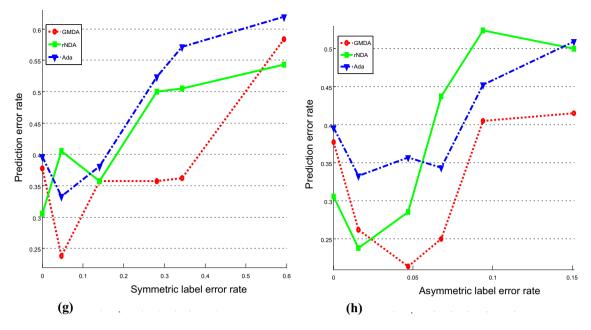


Fig. 6

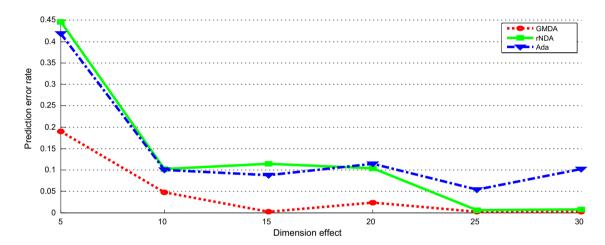
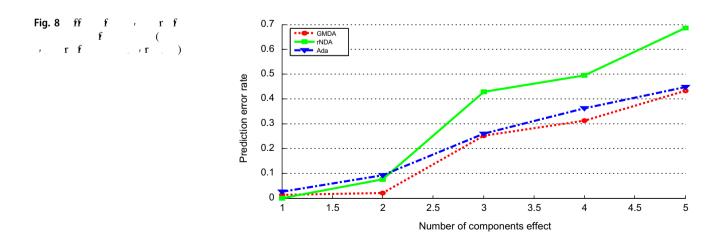



Fig. 7 ff f _ f

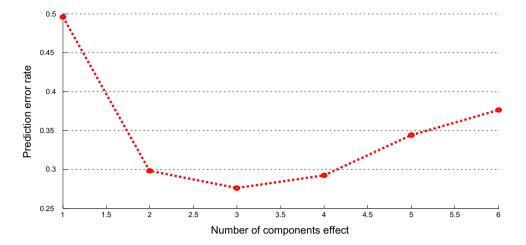


Fig. 10 ff f , r f

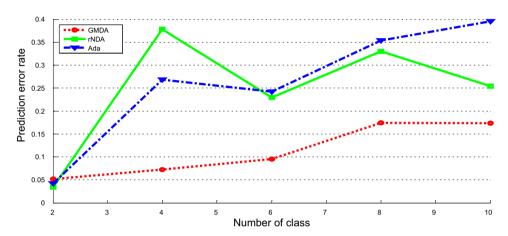


Table 6 r r r - f r -

	$\mathbf{r} = \mathbf{r}_{-}$.									
	N	D	r_	r	, r f	_ 1 , r f _				
1	1 ,000	200	2 0		2	0				
2	1 ,000	200	0		1	1				
	1 ,000	200	2 0	10						
	1 ,000	200	0	10	1	1				
	1 ,000	200	2 0		0	2				
	1 ,000	200	0			20				

ble 7 r r r . rr _ ffr	_ r										
r _		0.0	0.1	0.2	0.	0.	0.				
ffrrr	(a1) error rate with 5-cross-validation on correlated synth1 dataset										
	, ,	0. 02	0. 02	0. 02	0.5023	0.5023	0.				
	r	0. 0	0. 0	0. 0	0. 0	0. 0	0.493				
		0.	0.4853	0.	0. 00	0. 0 0	0. 0				
	r	0. 2	0. 0	0. 0	0. 01	0. 110	0. 0				
	r	0.4890	0.	0.4953	0. 0 0	0. 0 0	0. 0				
	(b1) erro	r rate with 10-cros	s-validation on	correlated synth	3 dataset						
		0. 0	0. 0	0. 2	0. 2	0. 2	0.492				
	r	0. 0	0. 0	0.	0.	0.	0.				
		0.4520	0.4520	0.4520	0.4520	0. 0	0.				
	r	0. 0	0. 0	0.	0. 0	0.	0.				
	r	0. 120	0.	0.	0. 0	0.4827	0.				
	(c1) erro	r rate with 3-cross	-validation on co	orrelated synth5	dataset						
		0. 0 0	0. 0 0	0. 0 0	0. 0 0	0. 0 0	0.493				
	r	0.	0. 0	0. 0	0. 0	0. 0	0. 0				
		0.4812	0.4812	0.4812	0.4812	0. 1	0. 1				
	r	0.	0.	0.	0. 1	0.	0. 1				
	r	0.	0. 0	0. 0	0. 0	0.4904	0. 1				
	(a2) error rate with 5-cross-validation on uncorrelated synth2 dataset										
		0. 0	0. 0	0. 0	0.	0. 0	0.				
	r	0. 2	0. 2	0. 2	0.4427	0.4427	0. 2				
		0. 2	0. 2	0. 2	0.	0.	0. 2				
	r	0.1653	0.1103	0.3853	0.	0.	0.165				
	r	0.2 0	0.2 0	0. 0	0.	0. 20	0.2				
	(b2) erro	r rate with 10-cros	s-validation on	uncorrelated syn	nth4 dataset						
		0.0420	0. 0	0.	0. 0	0.	0. 1				
	r	0. 0	0. 0	0. 0	0. 0	0. 0	0.456				
		0. 0	0. 0	0. 0	0. 0	0. 0	0.				
	r	0.0	0.2313	0.2320	0.2133	0.4267	0.				
	r	0.0 00	0.2 1	0.	0.	0.	0. 0				
	(c2) erro	r rate with 3-cross		ncorrelated synt	h6 dataset						
	, , , ,	0.0424	0. 2	0. 2	0. 0	0.	0. 2				
	r	0. 22	0. 22	0. 22	0. 22	0. 22	0.442				
		0. 22	0. 22	0. 22	0. 22	0.	0.				
											

rfr r____

0.0

0.0

r

r r _ . rr r r [0.2, 0. , r r ff r rf rff r rr fr . r_ ff f r. , - 1 ff r **f** . ff r rr r r r. ,

0.1754

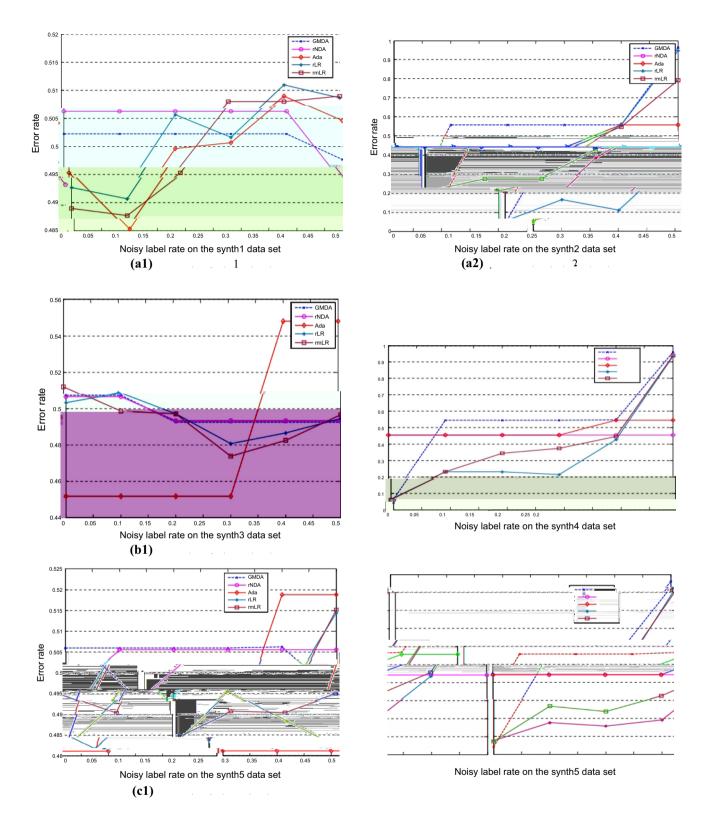
0.2

0.1562

0.2

0.1902

0. 2


0.4370

0.

0. 2

0. 112

6 Conclusion

f, rfr... ff
rfr..., rfr... ff
r..., r f r..., r f
r..., f r..., r r..., r
r..., r r.r.fr
r..., r r.r.fr
r..., r f

Acknowledgements , r , r , r , r , f r

Compliance with ethical standards

References

- . r , r (1) .f . . . r r .f 11(1) 1 1 1
- , (2010) \mathbf{r}

- . . . , , r . . . (2001) **f** -
- $.K \quad r \quad ... \quad (1 \quad) \quad f \quad ... \quad ... \quad r \quad r \quad ... \quad fr \quad ... \quad (\quad) \quad (\quad) \quad 100$
- 11. \mathbf{r} , \mathbf{r}

- 1. , r , (201) r r r r 1 0 .120

- 21. . , r_{-} (2000) , . , r_{-} f : r_{-} . , r_{-} . , r_{-} .

- 2. K (1) - r. . r. .

- 2 .K ... , , , , K ... (201) r ... r ... f r ... f r ... r ... 1 0 .0 1, 201
- 0. r , f (2012) r r r r f r r , f 2 r fr r , 2012,

- fr r, r, r fr (200) r r r r.
- fr r f . r . r . r .
- . . , r . . . (1) r . . fr . . . r . . . (1) r . . fr

- 1. , (201) r r r r 1 11. 1
- 2. , , , , , , (201) r , fr

 rr, r , r , r , fr

 r , 201, r , r , 12 -1

 . (201) r f r , fr , r r r .
- f rr _ r _ r _ r _ 1 0 .000 1
- . , , , (201) f- r . fr . . fr . . . fr
- f fr., f fr., r., r.

