REGULAR PAPER

Trajectory splicing

Qiang Lu¹ · Rencai Wang^{1,3} · Bin Yang² · Zhiguang Wang¹

Received: 23 September 2018 / Revised: 25 June 2019 / Accepted: 30 June 2019 / Published online: 18 July 2019 © Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract

Wi h con in ed de elo men of loca ion-ba ed em, la ge amo n of cajec α ie become a ailable Chich cecord mo ing objec loca ion acro ime. If he cajec orie collec ed b differen loca ion-ba ed em come from he ame mo ing objec, he are spliceable trajectories, Which consib e ose se en ing holi ic beha ior of he mo ing objec. In hi a e, $\frac{1}{2}$ e con ide ho $\frac{1}{2}$ o efficien l iden if liceable ajec e ie . More ecificall, $\frac{1}{2}$ e fr formali e a liced model o ca ce liceable cajec orie Zhore her ime are di join, and he di ance be geen hem a e clo e. Ne , o efficien 1 im lemen he model, ge de ign hree com onen : a di join ime inde , a direc ed ac clic g a h of b-cajec or loca ion connec ion, and 20 lice algori hm. The di join ime inde a e a di join ime e of each cajec α f α ing di join ime cajec α ie efficien 1. The directed ac clic g a h con cib e o di co e ing g o of liceable $\langle ajec \alpha ie \rangle$. Ba ed on he iden ified go , he lice algori hm findmaxCTR find ma imal g o con aining all liceable cajec orie. Al ho gh he lice algori hm i efficien in ome cac ical a lica ion, i c nning ime i e onen ial. Therefore, an a so ima e algori hm findApproxMaxCTR i so o ed o find cajec orie which can be liced with each o her with a cer ain cobabili within ol nomial α e effec i e and efficien.

Keywords \mathbb{R} ajec α com a ion $\cdot \mathbb{R}$ ajec α f ion $\cdot \mathbb{R}$ ajec α (eco α). \mathbb{R} ajec α linking

☑ Qiang L l iang@c .ed .cn Rencai Wang ∢c‰ang3@ifl ek.com

> Bin Yang b ang@c .aa .dk Zhig ang Wang c‰ang g@c .ed .cn

¹ Beijing Ke Lab of Pecole m Da a Mining, China Uni et i of Pecole m-Beijing, Beijing, China

² De a men of Com e Science, Aalbox g Uni e i , Aalbox g, Denma k

³ IFLYTEK CO.,LTD, Hefei, China

1 Introduction

Information echnolog i almo e e Where in o dail life, Which collec a io informa ion f om different digi al de ice [4,10]. S eciall, he loca ion-ba ed em ba ed on mobile de ice, ch a GPS, mobile hone, and near-field comm nica ion (NFC) e minal, generate large amon of cajec α ie of mo ing objec. U all, each indi id al em e i ni e ID code o iden if each $\langle a | ec \alpha \rangle$. For e am le, a mobile hone ne $\sqrt[\infty]{\alpha}$ k iden ifie $a < a \neq c \propto b$ i ele honen mbe, \mathcal{D} hile an NFC emiden ifie i b i de iceid. Since m 1 i le em ma ca ce a ame mo ing objec a differen ime and lace, he objec α ial cajec α ie . Reco α ing a complete trajectory of a each em ga her mo ing objec from he e α ial cajec α ie collected in α io em, named trajectory **splicing**, i e en ial for man a lication, ch a anomal beha ior delection [21,22], da a f ion, and cajec α da a mining [46]. The follo $\frac{1}{2}$ ing ca e ho $\frac{1}{2}$ in Fig. 1 elabor a e r ajec or licing.

E α % geekda, Alice and Bob go o % α k b % galking and aking he b% a, a ho% n in Fig. 1. Their mo emen general e i α ial ζ ajec α ie : W1, S1, O1, W2, S2, and O2, % have he mobile α of % are calculated with and W2; he b% a check-in emical ζ e S1 and S2; he office check-in emical ζ e O1 and O2. Their comilies α and e can be ζ ecolor α ed balled on a io emic α allocation of he e α tail ζ ajec α ie ζ α emilies α in expression of β are calculated on the expression of the expression of β and β are calculated on α and β are calculated on β and β are calculated on β and β are calculated on β and β and β and β are calculated on β and β and β and β and β are calculated on β and β and β and β and β are calculated on β and β and β are calculated on β and β and β and β and β are calculated on β and β are calculated on β and β are calculated on β and β and β are calculated on β and β are calculated on β and β are calculated on β and β and β are calculated on β and β are calculated on β are calculated on β and β are calculated on β are calculated on β and β are calculated on β are ca

According o he abo e ca e, finding a g o of liceable cajec α ie m a i f he folloging heece kemen. The fix i he **disjoint time constraint** have ke ha ime in α al of liceable cajec α ie in he g o hold no o α la g heach o he. The econd i he **spatial constraint** have ke ha he di ance be geen hek end oin hold be near b g heach o he. The hird i he **maximal group constraint** have ke ha he g o of liceable cajec α ie hold be ma imal and hold no be con ained b o her g o . Tha mean connecting a man liceable cajec α ie a o ible or eco α a com le e cajec α .

How α , i i non-ci ial o find liceable cajec α ie o a i f he abo e con cain owing o he following hree challenge. The fir challenge i ha he coce of finding cajec α ie ha a i f he di join ime con cain i α ime-con ming. The coce incl de ∞ e : α ing b-cajec α ie in all ime ga of a cajec α and co n ing he n mber of b-cajec α ie ha belong o he ame cajec α . For e am le, in Fig. 1, W2 ha hree ime ga : $(-\infty, 8:00)$, (48((c)-.107451e))15(e)-316.70003 S i

‰ ∢ajec orie % iho ing o here liceable $\langle ajec \alpha i e \rangle$. The o here i here Which connec indirect splice %hich connec $\frac{2}{\sqrt{0}}$ < a jec α ie b ing o here liceable $\langle a | e c \alpha i e \rangle$. For e am le, in Fig. 1, W2 and S2 are connec ed direc 1, While W2 and O2 are connec ed b S2. The indicec lice make he soce of licing sajes α is complicated beca e i need o find o here a jec α is o de ermine the here here α a jec α is can be connected α no. To he be of o < kno kno $\frac{1}{2}$ ledge, kno $\frac{1}{2}$ n g o a exn mining [8,9,19,24 27,36,45] α < ajec α cl e ing [24,25] canno find g o of liceable ajec α ie, beca e he di co e g o of *cajec* or ie according o he imilar i be % een hem a her han he ela ion of direc α ajec α linking [38] i clo e o he challenge, i can onl (indirec) lice. Al ho gh f lice $\langle a | e c \alpha | e c a | i c \alpha | i a | b | e \langle a | e c \alpha | i c \alpha | e c \alpha | i c \alpha | e c \alpha |$ find 2/0 dir ec he divec α indivec lice.

The hird challenge i ha i m find a man liceable cajec α ie of a mo ing objec a o ible. In general, if a me hod \mathcal{X} an o ac is e a go of liceable cajec α ie \mathcal{X} hich are no con ained b o hergo, i need o cale e all o ible combination of liceable cajec α ie for a mo ing objec. For e am le, in he abole cale, or ecoler Boble cajec α , he ego, cha {W2, S2}, {W2, O2}, {S2, O2}, and {W2, S2, O2}, m be cale ed. Namel, i need o find a go of liceable cajec α ie \mathcal{X} hich mo com acl fill a ecific a io em α alcange. So, i i a bin-acking coblem and i NP-hard [23]. The de ign of an a colimation cheme α he cilic me hod i here o deal \mathcal{X} i here coblem.

In order o deal Zigh he abo e challenge, a liced model i defined o formali e he abo ese kemen of liceable sajec α ie. Ba ed on he liced model, sajec α ie are egmen ed in o b-s ajec α ie acc α ding o a eed h e hold. A B^+ -s ee [7] i ed o a e he coce of finding di join ime e, he inde of he e b- α ie β For eeding di join ime called **DT-index** i con \langle c ed o kee in e media e $\langle e | l |$ of exching he di join ime e in each ime lice. Moreo α , he DT-inde i am lice ol ion ζ c ζ e like a $ad ce and can a e in e media e e l of ime lice <math>\mathcal{Z}_{i}$ h differen leng h, or ing e ie Zi h differen ime in er al . For er am le, a ming ha he DT-inde con i of in e media e c e l of one, 200, and fo c da , if a e ime in e al i 4.5 da , he DT-inde can find di join ime e \mathcal{Z}_i hin he fo < da , and he B^+ -
< ee can find di join ime e $\frac{1}{20}$ hin he 0.5 da . Ba ed on he abo e $\frac{1}{20}$ inde e , an algori hm e DT TR i co o ed o ob ain all di join ime e 26 hin a ecific ime in e al.

In α de α o find liceable ζ ajec α ie , a di ec ed ac clic gra h of b- ζ ajec α loca ion connec ion called *STLC-DAG* i α ea ed o connec b- ζ ajec α ie b heir ime and loca ion . Once he alg α i hm *c* ea eSTLC-DAG ha α ea ed he gra h, i can ob ain he liceable e of ζ ajec α ie ha can lice χ i h a ecific ζ ajec α . F α e am le, in he abo e ca e, he alg α i hm can find S2 liceable e {W2}, W2 {S2, O2}, and O2 {W2}. M α eo α , he e liceable e f α m a **splice graph**, χ here each node i a ζ ajec α , and he edge be χ en χ o node ζ e ζ e en ha he χ o ζ ajec α ie are liceable. F α in ance, he node S2 ha one edge χ hich connec he node W2, and W2 ha edge χ hich connec S2 and O2. Th , in he lice graph, a cli e i a gro of liceable ζ ajec α ie . F α add e ing he hird challenge, an alg α i hm *dMa CTR* i ζ o o ed o find all ma imal

mo ing objec : $CTR_1 = \{TR_A, TR_B, TR_C\}$, which incl de he sajec α is with iden if A, B, and C, and $CTR_2 = \{TR_D, TR_E\}$, which incl de he sajec α is with iden if D and E.

In a sajec α , ω am le oin , p_i and p_{i+1} , $\alpha \in$ **connectable** if $speed(p_i, p_{i+1}) \ge e$, where e i a eed he hold and

$$speed(p_i, p_{i+1}) = \frac{d(p_i, p_{i+1})}{|p_{i+1}.t - p_{i}.t|}$$
(1)

% here $d(p_i, p_{i+1})$ ς e < n he E clidean di ance be % cen am le oin p_i and p_{i+1} . Gi en a e ence of am le oin in a cajec α TR_i , if an % o con ec i e am le oin in he e ence α e connec able, he e ence i **connectable** in ha i ho% one con in o mo emen. Mα eo α, if o her connec able e ence do no con ain a connec able e ence, he connec able e ence i called **sub-trajectory** (deno ed a **STR**). In α ic la, % e e STR_i o deno e he j h b-cajec α in cajec α TR_i . Fα e am le, cajec α TR_A in Fig. 2 ha 4 b-cajec α ie : $STR_A^1 = \langle a_1, a_2, a_3 \rangle$, $STR_A^2 = \langle a_4, a_5 \rangle$, $STR_A^3 = \langle a_6 \rangle$, and $STR_A^4 = \langle a_7, a_8, a_9 \rangle$. A b-cajec α i he **atomic** com a ional ni in hi a α.

The **time interval** of he b- ς ajec α , deno ed a i(STR), i [first(STR).t, last(STR).t], (where he f nc ion first(·) and last(·); $\varsigma \in \varsigma$ n he fix and la am le oin in he b- ς ajec α STR, ςe ec i el. The **time interval** of he ς ajec α i he e of ime in ε al of all i h raise arise data ad α i(TP).

b-< ajec α ie , deno ed a $i(TR_i) = \bigcup_{STR_i^j \in TR_i} ti(STR_i^j)$.

The **gap** be $\chi_{een} \chi_{o}$ b-sajec α ie STR_i^J and STR_m^n , deno ed a $gap(STR_i^J, STR_m^n)$, i defined b E . 2.

$$gap(STR_i^j, STR_m^n) = (last(STR_i^j).t, first(STR_m^n).t)$$
(2)

Max eo α , he **gap** of sajec α TR_i in he ime in α al T, deno ed a ga (TR_i), i defined b E . 3.

$$gap(TR_i) = T - ti(TR_i) = T - \bigcup_{STR_i^j \in TR_i} ti(STR_i^j)$$
(3)

For e am le, he ime in α al of cajec α TR_A , deno ed a $ti(TR_A)$, i { $[t_1, t_2]$, $[t_3, t_4]$, [t_5, t_5], [t_6, t_7]}. Gi en $T = [t_0, t_8]$, \mathcal{L}_{α} ha e $gap(TR_A) = \{(t_0, t_1), (t_2, t_3), (t_4, t_5), (t_5, t_6), (t_7, t_8)\}$.

2.2 Spliceable trajectories

If $\mathcal{X}_{0} \leq ajec \alpha$ ie TR_{i} and TR_{j} can be liced in 0 a com le $e \leq ajec \alpha$, he m mee he **disjoint time constraint** has e is the hash in e al ime hold no o e la each o her, namel $ti(TR_{i}) \subset gap(TR_{j})$. Gi en a $\leq ajec \alpha$ TR_{i} , all he $\leq ajec \alpha$ ie ha mee he di join ime con $\leq ain \mathcal{X}_{0}$ h TR_{i} con i e he **disjoint time set** of TR_{i} , deno ed a DT_{i} . In Fig. 2, ince $ti(TR_{B}) \subset gap(TR_{A})$ and $ti(TR_{C}) \subset gap(TR_{A})$, \mathcal{X}_{0} ha e $DT_{A} = \{TR_{B}, TR_{C}\}$.

In addi ion o he afor emen ioned em α al con ζ ain, if TR_i and TR_j are liceable, he m al o mee he **spatial constraint**, meaning ha he b- ζ ajec α ie from TR_i and TR_j m be clo e eno gh o each o her. To formall define he a ial con ζ ain, χ_e in ζ od ce χ_{00} conce *iceab e ai* and *iceab e a ec ie*.

Definition 1 Gi en \mathcal{X}_{0} b-cajec α ie STR_{i}^{j} and STR_{m}^{n} from \mathcal{X}_{0} cajec α ie, ce ec i el, and a di ance he hold γ , if he do no o e la each o he on he ime dimen ion and

he di ance be geen hem i le han γ^1 , he go b-cajec α ie STR_i^j and STR_m^n form a *iceab e ai*, deno ed a $\langle STR_i^j, STR_m^n \rangle$.

Definition 2 Gi en ome ς ajec α ie, if he b- ς ajec α ie in he gi en ς ajec α ie can con i e a b- ς ajec α e ence $\langle STR_i^j, \ldots, STR_m^n \rangle$ ch ha an \bigotimes neighbor b- ς ajec α ie a liceable air, he e ς ajec α ie are called *iceab e a ec ie*.

Ba ed on he abo e χ_0 defini ion, χ_e fix in ς od ce he conce c e e a ec o f α m la e he ma imal g o con ς ain, χ_h hich ς e is that he g o of liceable ς ajec- α ie ho ld no be con ained b o he g o . Then, χ_e define he *ice deg ee* o an if he com le ς ajec α .

Definition 3 If o here go of liceable < ajec α ie do no con ain a go of liceable < ajec α ie, he go form a complete trajectory, deno ed a *CTR*.

Definition 4 The *ice deg ee*, $\frac{\alpha}{2}$ hich con i of $\frac{\alpha}{2}$ fac α : he can is of he m of he di ance be $\frac{\alpha}{2}$ een differen cajec α ie o he di ance of *CTR* and he can is of he m of imega o he ime in α all of *CTR*, i ed o an if he com ac ne le el of connection be $\frac{\alpha}{2}$ een cajec α ie in a *CTR*, defined b E . 4.

$$dg(CTR) = \frac{\sum_{\langle STR_i^j, STR_m^n \rangle \in CTR} d(STR_i^j, STR_m^n)}{distance(CTR)} \times \frac{\sum_{\langle STR_i^j, STR_m^n \rangle \in CTR} gap(STR_i^j, STR_m^n)}{time(CTR)}$$
(4)

Zhere $\langle STR_i^j, STR_m^n \rangle$ i a spliceable pair in he CTR; $d(STR_i^j, STR_m^n)$ i he di ance be Zeen Zeo b-cajec e is STR_i^j and STR_m^n ; distance(CTR) i he m of di ance be Zeen Zeo con ec i e am le oin in CTR, namel $distance(CTR) = \sum_{p_i \in CTR} d(p_i, p_{i+1})$, in Zhich p_i and p_{i+1} are Zeo con ec i e am le oin in he CTR; time(CTR) = last(CTR).t - first(CTR).t.

Ba ed on he defini ion, $dg(CTR) \in (0, 1)$ and he malle he lice deg ee dg(CTR), he clo α cajec α ie in he com le ϵ ajec α CTR. F α e am le, in Fig. 2, a ming ha he di ance fac α in Alice and Bob α e he ame al $e 0.02, dg(Alice) = 0.02 \times (((8 : 27 - 8 : 25) + (9 : 00 - 8 : 52) + (9 : 13 - 9 : 10))/(9 : 13 - 8 : 15)) \approx 0.0448$, and $dg(Bob) = 0.02 \times ((8 : 23 - 8 : 20) + (9 : 16 - 9 : 14) + (9 : 23 - 9 : 21)/(9 : 23 - 8 : 00)) \approx 0.0017$. So, d e o dg(Bob) < dg(Alice), he com le ϵ ajec α of Bob i be α han ha of Alice.

2.3 Problem definition

According to he above definition, $\frac{\alpha}{\alpha}$ form late the solution of signal according to he solution of the solution of the

Definition 5 From a da a e of cajec α ie, according o a α ime in α al, he *a ec ici g e* di co α a com le e cajec α e ence $CTRS = \langle CTR_1, \dots, CTR_n \rangle$, where each com le e cajec α *CTR* i canked b i *splice degree*.

¹ Namel $(ti(STR_m^n) \subset gap(STR_i^j, STR_i^{j+1})) \cap (ti(STR_i^j) \subset gap(STR_m^{n-1}, STR_m^n)) \cap (d(last(STR_i^j), first(STR_m^n)) \leq \gamma).$

1

If T i oo long, here are man ime lice in T, and E. 6 con ain man nion of ea ion of DF o ha he com a ion of E. 6 i ime-con ming. To alle ia e he i a ion, \mathcal{U}_{e} are i ion he ime dimen ion in o m l i le le el of ime lice. For in ance, one le el of ime lice i a da, and ano here le el i a \mathcal{U}_{e} ek or mon h. So, if |T| i one mon h, E. 6 can be com ed b onl one DF on he mon h le el of ime lice ca here han b abo 30 DF on he da le el.

(2) The c e f di i i e i de

Ba ed on he abo e anal i, $\frac{\pi}{2}$ e de ign he di join ime inde (called **DT**-inde) $\frac{\pi}{2}$ dich incl de a *DT*-tree and a *DF*-tree ha a e he di join ime e *DT* of each $\frac{\pi}{2}$ aigc $\frac{\pi}{2}$ and i $\frac{\pi}{2}$ ecom a ion *DF* on differen le el of ime lice, $\frac{\pi}{2}$ ec i el, a ho $\frac{\pi}{2}$ n in Fig. 4. The $\frac{\pi}{2}$ ec ha e he ame $\frac{\pi}{2}$ c $\frac{\pi}{2}$ e. The *DT*-tree (*DF*-tree) con i of a ingle $\frac{\pi}{2}$ on node, leaf node, and non $\frac{\pi}{2}$ oo, non-leaf node. The de ailed da a $\frac{\pi}{2}$ c $\frac{\pi}{2}$ e of he e node are a follo $\frac{\pi}{2}$.

A de, which ma ha e m l i le children, a e heir ID. A ID i bo h a ime in e al and a filename, when e ing a ime in e al T, i children and heir file are loca ed ickl.

A eaf de α e air of $\langle i, DT_i \rangle \alpha \langle i, DF_i \rangle$ in a ceific ime lice. F α e am le, in Fig. 4, $DT^{3,d}$; ec α d air $\langle A, \{B, C\} \rangle$, $\langle B, \{A, C\} \rangle$ and $\langle C, \{A, B\} \rangle$.

A - , -eaf de onl ha χ_0 children. I α e i children ID and air of $\langle i, DT_i \rangle \propto \langle i, DF_i \rangle$, $\chi_{\text{there }} DT_i \propto DF_i$ can be comed b E $.6 \alpha$ 5, c e c i el. Ai o n e 0 T D .0002 T c (o <) T j

3.2 Processing query

Wi h he B^+ -tree and he DT-inde, \mathcal{X}_{e} im lemen an alg α i hm Query DTsTR \mathcal{X}_{e} hich ickl find he di join ime e DT of each ζ ajec α and all b- ζ ajec α ie (deno ed a STRSet) in a ime in α al T, a ho \mathcal{X}_{e} n in Alg α i hm 1.

Algorithm 1: *queryDTsTR*

Input: B^+ -tree, DT-Index, T Output: DT(T), STRSet 1 STRSet, DT(T_1), R(T_1), R(T_2), P=readsTR(B^+-tree, T); 2 DT(T_2) = Equation 7; 3 DT = (DT(T_1) \cup R(T_1)) \cap (DT(T_2) \cup R(T_2)); 4 < e < n DT, STRSet;

The α ime in α al T con i of \mathcal{X}_0 α : One i a e of \mathcal{X}_0 ime in α al \mathcal{X}_0 ho an ime lice in he DT-inde, deno ed a $T_1 = \{t_1, t_2\}$; he ohe i he ime in α al ha con ain n ime lice in he DT-inde, deno ed a T_2 . For α am le, gi en T = [8:3511:25]and he minimal ime lice i an ho ς , $T_1 = \{[8:359:00], [11:0011:25]\}$, and $T_2 = [9:0011:00]$. Wi h he B^+ -tree, i i ea o find all cajec α ie P and heic cajec α ie STRSet in T. Mean \mathcal{X}_0 hile, eaching he e b-cajec α ie can ob ain a cajec α e $R(T_1)$ where each cajec α a ear in T_1 b no in T_2 , a cajec α e $R(T_2)$ where each cajec α a ear in T_2 b no in T_1 , and a di join ime e $DT(T_1)$ in he ar T_1 . The f nc ion readSTR a Line 1 im lemen he abo e coce . Then, \mathcal{X}_0 h he DT-inde , he code a Line 2 com e he di join ime e $DT(T_2)$ b E . 7. A la , he code a Line 3 ge he di join ime e DT in T.

The algorithm cangen α faba ed on he following work ea on . One i ha, in general, com a ed with he are T_2 , he are T_1 i α have he has here are fewere b-saje or α in STR) in T_1 . Hence, finding he dijoin ime e $DT(T_1)$ i fa . The order i ha, ince he dijoin ime e DT of each saje α has been a ed bared on m l i le ime cale in he DT-inde, onl a mall amon of node need or be earched from he inde in α der o com e he dijoin ime e $DT(T_2)$ b E . 7. So, finding $DT(T_2)$ i al of a .

3.3 Splicing trajectory

3.3.1 Finding spliceable trajectories

We de ign an alg α i hm *createSTL-DAG* o di co α liceable ζ ajec α ie b con ζ c ing a di ec ed ac clic g a h of b- ζ ajec α loca ion connec ion (*STLC-DAG*), % hich i defined a *STLC-DAG* = (V, E), % here

here e V con i of all b-cajec α ie (STRSet), a α e e s, and an end e e, namel $V = \{STRSet\} \cup \{s, e\};$

he edge e $E \operatorname{con} i$ of $\bigotimes_{i \neq 0} ca \operatorname{egc} i e \operatorname{of} \operatorname{div} \operatorname{ec} \operatorname{ed} \operatorname{edge}$. One, deno ed a E_s , i he divec ed edge ha connec $\bigotimes_{i \neq 0} b \operatorname{-cajec} \alpha$ ie in he ame cajec α . The o he, deno ed a E_d , i he divec ed edge ha connec a liceable air $\langle STR_i^j, STR_m^n \rangle$, a ho $\bigotimes_{i \neq 0}$ in Fig. 5.

Since here are here li le e ence in he grah, all fir e e from here e ence con i e a **candidate vertex set** (CVS), \mathcal{C} hich i defined b E . 8.

$$CVS(STR_i^j) = \{STR_m^n | STR_m^n = first(\{ti(STR_m^k) \subset gap(STR_i^{j+1}, {}_m^k, STR_i^j)\}), m \in DT_i\}$$
(8)

For e am le, in Fig. 5, $CVS(STR_A^1) = \{STR_B^1, STR_C^1, STR_D^1, STR_F^2\}$.

Lemma 3 ho% ha %hen a \checkmark ajec α canno lice %i h ano her \checkmark ajec α , he edge be %een he %o \checkmark ajec α ie can be dele ed. M α eo α , he dele ion doe no ca e he \checkmark e l of liceable \checkmark ajec α ie o change.

The e docode of con ς c ing he g a h *STLC-DAG* i ho χ_n in Algori hm 2. The in arg men : he b- ς ajec α e *STRSet* and he di join ime e *DT*, are ς e l of ς nning he algori hm *queryDTsTR*, and γ i a di ance he hold. The algori hm 2 χ_i ll ς e ς n a e $SP = \{SP_1, \ldots, SP_n\}$, χ_i here each SP_i i a g o of liceable ς ajec α ie.

Algorithm 2: createSTLC-DAG

```
Input: STRSet, \gamma, SP = DT
   Output: SP
 1 sortByStartTime(STRSet);
 2 DAG.V = STRSet \cup \{s, e\};
 3 DAG.E.E_s = createEsEdge(STRSet, s, e);
 4 C = \phi;
 5 for k = 0; k < len(STRSet); k + + do
       STR_i^j = STRSet[k];
 6
       for each STR_{i}^{v} \in sortByDes(C.get(STR_{i}^{J})) do
 7
 8
           sg = 0;
 9
           repeat
               if !exist Path(STR_k^v, STR_i^j, SP_k, DAG) then
10
                   DAG.E.E_d.delEdges(TR_k, TR_i);
11
                   SP_i = SP_i - k;
12
13
                   SP_k = SP_k - i;
                   C.del(\langle TR_i, TR_m \rangle);
14
                   sg = |C|;
15
               else
16
                | sg = sg - 1;
17
               \langle STR_k^v, STR_i^j \rangle \leftarrow C.next(STR_k^v, STR_i^j);
18
           until \langle STR_k^v, STR_i^j \rangle \neq \phi \&\& sg > 0;
19
       canTRSet = CVS(STR_i^J);
20
       for each STR_m^n \in canTRSet do
21
           if d(STR_i^j, STR_m^n) \leq \gamma then
22
               DAG.E.E_d.addEdge(STR_i^J, STR_m^n);
23
           else
24
               C.add(\langle STR_m^n, STR_i^j \rangle);
25
26 \le e \le n SP;
```

Initiall, he algorithm α all b-sajec α ie in *STRSet* b heir α ime, α ea e all α e e, and connec he e α e e ha belong o he ame sajec α (Line 1 3). *C* i a container hat a e air of b-sajec α ie which α e likel o be indirect liced b

o her b-cajec α ie (Line 4). For each b-cajec α STR_i^j in STRSet, i candida e e e e $CVS(STR_i^j)$ i fir 1 ob ained b E . 8. Then, he algorithm α ea e a directed edge be geen he go b-cajec α ie STR_i^j and STR_m^m

Af α Algori hm 2 fini he i ς nning, if here e i an edge be $\frac{\pi}{2}$ een $\frac{\pi}{2}$ α cajec α ie in he gra h *STLC-DAG*, he $\frac{\pi}{2}$ α cajec α ie can be liced according of Theorem 1. A he ame ime, he algori hm can find gro of liceable cajec α ie *SP*, $\frac{\pi}{2}$ here each *SP_i* i a e of cajec α ie ha can be direc 1 α indirec 1 liced $\frac{\pi}{2}$ ih he cajec α *TR_i* ba ed on The α em 2.

Theorem 1 If there exists a directed edge between two trajectories in the graph STLC-DAG, the two trajectories can be spliced.

Theorem 2 For each $SP_i \in SP$, where SP is one of the output parameters of algorithm 2, SP_i is a set of trajectories that can splice with the trajectory TR_i .

The abo e \mathcal{Q}_{0} < oof are < o ided in A endi B.

3.3.2 Finding maximum simum3ryet t5

Algorithm 5: findApproxMaxCTR

Input: SP, SUBG = V, CAND = V, d, k, c = 0, $fCTR = \phi$ Output: fCTRSet:a fCTR e 1 if $SUBG! = \phi$ then if c = k then 2 3 if $|CAND| \leq (d-k)$ then $fCTR \leftarrow CAND;$ 4 else 5 $fCTR \leftarrow takeFirst(CAND, d - k);$ 6 7 $fCTRSet \leftarrow fCTR;$ 8 return; $i = subscript(max|SUBG \cap SP_i|), i \in SUBG;$ 9 $branch = CAND - SP_i$; 10 11 while branch ! = null dob = takeFirst(branch): 12 $fCTR \leftarrow b;$ 13 $SUBG_b = SUBG \cap SP_b;$ 14 $CAND_h = CAND \cap SP_h;$ 15 $fCTRSet = findApproxMaxCTR(SP, SUBG_b, CAND_b, d, k, c + 1, fCTR);$ 16 $CAND = CAND - \{b\};$ 17 18 else $fCTRSet \leftarrow fCTR;$ 19 20 < e < n fCTRSet;

Ba ed on he abo e anal i, \mathcal{J}_{e} de ign an alg α i hm *findApproxMaxCTR* o find a $\langle 0 \rangle$ liced a h ickl . The de ailed e docode of *findApproxMaxCTR* i ima e ma imal li ed in Algori hm 5. The algori hm i imilar o Algori hm 4 e ce he code on Line 2 8. The additional a same example a follo \mathcal{G} : d, k, and c, \mathcal{G} here d i ed o limi he n mber of liceable
 ajec α ie in one com le e
 ajec α ; k, Zhich i ed o limi he ime of in e^{-1} ec ion be χ_{ee} or χ_{O} SP, i a e^{-1} i e de h of he algori hm; and c^{-1} ecord he c e^{-1} he c ime of com ing in exercision in a liced a h fCTR. The code on Line 2.8 ho% ho%o deal \mathcal{J}_{i} h cajec orie in CAND \mathcal{J}_{i} hen c = k. If he i e of CAND i le han d - k, all s ajec α ie in CAND α e added in o fCTR (Line 3 4). If he i e i m α e han d - k, he fr (d-k) sige one are added in o fCTR (Line 6).

4 Time complexity analysis

In hi ec ion, \mathcal{X}_{e} an if he nning ime of he abo e algorithm and ignore algorithm in he recore ing e, ch a he con r c ion of B^+ -ree and DT-inde, beca e he can n offline. Le T(function) be he nning ime of he function, M be he n mber of b-rajec orie, and N be he n mber of rajec orie.

Lemma 7 For the algorithm queryDTsTR, if the query time interval T consists of time slices from the DT-index, namely $T_1 = 0$ and $T_2 \neq 0$, the running time of queryDTsTR is $O(N^2)$; if the query time interval T does not contain the time slice for the DT-index, namely $T_2 = 0$ and $T_1 \neq 0$, the running time of queryDTsTR is $O(M^2)$.

Proof Since all b-cajec α ie are inde ed b B^+ -cee, he ime of α ing m bcajec α ie i $O(log_h^{|\Omega|} + M)$. $|\Omega|$ and b are con an . And, $log_h^{|\Omega|} \ll M$. So, he conting

ime of ceading all b-c ajec α ie in T i O(M). A he ame ime, $R(T_1)$ and $R(T_2)$ can be ob ained. If $T_1 = 0$, $DT(T_1)$ doe no need o be comed. Therefore, T(readSTR) = O(M). If $T_1 \neq 0$, he ming ime of coming $DT(T_1)$ i $O(M^2)$. And, $T(readSTR) = O(M^2)$. If $T_2 = 0$, E . 7 doe no need o be com ed. So, $T(queryDTsTR) = O(M^2)$.

If $T_2 \neq 0$, gi en ha T_2 con i of k ime lice \mathcal{Z} hich are in different le el in DT-inde, k node in he DT-inde need o be ead. Each node con ain no more han N i em in Which here are a mo N TR. According o E. 7, $T(E, 7) = O(kN^2)$. The ining ime of in \mathfrak{e} ec ion be \mathfrak{A} een $DT(T_1)$ and $DT(T_2)$ i $O(N^2)$. So, T(query DTsTR) i $O(N^2)$.

Lemma 8 The running time of the algorithm createSTLC-DAG is $O(M^2N^2)$.

Proof Le $P = \sum_{i=1}^{N} |DT_i|$, where $DT_i \in DT$. So, $N \leq P \leq N^2$. The ς noting ime of α eating α e e (Line 3) and edge (Line 4) both α e O(M). In each loo (Line 5), $T(getCandSet) = O(m_k)$, \mathcal{K} here $m_k = |CVS(i, j)|$. And, he n mber of loo be \mathcal{K} een Line 21 and 25 al o i m_k . T(addEdge) and T(add) bo h are O(1). The n mber of creating all edge in E_d (Line 20 25) i $\sum_{k=1}^{M} m_k$ ince len(STRSet) = M. According o $CVS(STR_i^j)$ (E. 8), $m_k \leq DT_i$.

Since more b-s ajec α is in TR_i set l in le $|DT_i|$, hen more of all edge i $\sum_{k=1}^{M} m_k$ and $\sum_{k=1}^{M} m_k \leq \frac{kM}{N} \times P$, where $k \ll N$. Moreo $\alpha, \leq nning$ ime of *pseudocode* on Line 20 25 i $O(\frac{M}{N} \times P)$. If all edge are added in o DAG (Line 23), C i em . If all edge are added in o C (Line 25), he longe ime ha *existPath*: n i $\frac{M}{N} \times P$ beca e delEdges (Line 11) can dele e ome edge . T(exist Path) de end on hen mber of er e e and edge be geen he go b-cajec orie STR_k^v and STR_m^n . So, $T(exist Path) = O(M + \frac{M}{N} \times P)$. The inning ime of o e a ion on Line 11 17 all i O(1). The inning ime of pseudocode on Line 5 19 i $O(\frac{M}{N} \times P \times (M + \frac{M}{N} \times P)) = O(\frac{M^2}{N} \times P + \frac{M^2}{N^2} \times P^2)$. The interstate TLC-DAG = $O(M + \frac{M}{N} \times P + \frac{M^2}{N} \times P + \frac{M^2}{N^2} \times P^2) = O(\frac{M^2}{N} \times P + \frac{M^2}{N^2} \times P^2)$

 P^2) = $O(\frac{M^2}{N} \times (P + \frac{P^2}{N}))$. Of ging o $P \le N^2$, $T(createSTLC-DAG) = O(M^2N^2)$

Lemma 9 The running time of the algorithm findMaxCTR is $O(3^{N/3})$.

Proof See Theorem 3 of [34].

Lemma 10 Let D be a maximal degree of vertexes in the SP-set graph. The running time of the algorithm findApproxMaxCTR is $O(N(N-D)C_{k-1}^{D-1})$. Moreover, if k in Eq. 11 is a small numerical value, the running time of the algorithm findApproxMaxCTR is $O(CN^2)$, where C is a constant.

Proof When he algorithm e ec e (de h0) he code on Line 11 for he fix ime, |branch| =N - D. The algorithm \mathcal{Z} ill go the branch SP_b , \mathcal{Z} have the matrix imal degree of an e b i D. Therefore, $|SUBG_b| \le D$. When i e ec e (de h l) he code on Line 11 for he econd ime, $|branch| \le D-1$. When i e ec e he code on Line 11 for he hid ime, $|branch| \le D-2$.

Each branch ce ea he abo e coce n il he de h of i \mathfrak{e} a ion ceache k. A he de h ince ea e, |branch| dece ea e. Max eo ex, in de |hk-1|, $|branch| \le D-k+1$. Accarding o Theorem 1 of [34], he algor i hm genera e all ma imal cli e 🐒 ho d lica ion. So, each b: anch in he de h 1 i looked a a combina ion C_{k-1}^{D-1} . The mining ime of $SUBG \cap SP_i$ on Line 9 i O(N). Th , $T(findApproxMaxCTR) = O(N(N-D)C_{k-1}^{D-1})$. When k i mall, C_{k-1}^{D-1} i al o mall. Then, $T(findApproxMaxCTR) = O(CN^2)$.

Table 2 Parame er

5 Experiments

In hi ec ion, $\frac{1}{2}e^{-\alpha}e^{-\alpha}e^{-\alpha}$ he e al a ion of he cajec α licing e (Defini ion 5) and i algorihm bared on $\frac{1}{20}$ large ceal- $\frac{1}{20}$ and cajec or data e. The firm one i Geolife [47, ed o e if he effec i ene of o c algori hm beca e i cecord labeled 48], 2/2 hich i (ajec α ie . The o her i came a (ajec α , \mathcal{X} hich con ain (ajec α ie genera ed b he α coad afe came a . Moreo α , came a α ajec α i mainl ed o e he∢ nning ime of algorithm, e eciall he algorithm query DTsTR based on he DT-inde, beca e i has $\frac{1}{2}$ large amo n of $\langle a | ec \alpha | ec \alpha \rangle$

e he $\frac{1}{2}$ algori hm findMaxCTR and findApproxMaxCTR o im lemen he ca-We jec or licing e, ce ec i el. Moreo e, Ze im lemen he abo e Zo algori hm in e e % h In el Xeon ad-co e and 8 GB of main memor. The Ja a lang age on a Lin a ame e ed in he follo $\frac{1}{2}$ e e imen x e defined in Table 2.

5.1 Evaluation on geolife

5.1.1 Data set and parameter setting

In he e e imen, $\int_{\infty}^{\infty} e < ac < a \neq c$ ie f om GeoLife in 2008 a he e da a e. Thi e da a e con ain 4405 sajec α ie from 32 e. Each egmen of ho e sajec α ie ha been labeled b one of 11 < an α a ion mode, which are bike, boa, b, car, < n, bwa, a i, ain, \mathcal{X}_{a} alk, air lane, and o here. The end end of a end of are considered from 11 different data end. So, egmen from he ame er $\frac{1}{2}$ h he ame label make he $\langle a | e c \alpha \rangle$ defined in he a e, deno ed a TR. Each egmen i he b-cajec α defined in he a α , deno ed a STR. The e da a e con ain 138 TR and 4405 STR, li ed in Table 3.

The f nc ion dist(i, j) i he E clidean di ance be Zeen Zo TR Zi h Zo label i and j, ϵ ec i el . Table 4 li ma im m, mean, and a iance of dist(i, j). For e am le, he fr < 0 in Table 4 < e < e en he mean, a iance, and ma di ance be geen bike-TR and o her-TR, $\mathcal{X}_{\text{thich}}$ are 109,477 m, 146,006 m, and 212,719 m, \mathcal{X}_{e} ec i el. We e fo \mathcal{X} al e

Table 3	Com	o i ion of TR	
Da a e			

Id	Da a e	TR	STR	Id	Da a e	TR	STR
1	Air lane	1	2	7	S b‰a	7	108
2	Bike	14	301	8	Ta i	13	71
3	Boa	1	1	9	T: ain	4	12
4	В	22	426	10	Walk	28	756
5	Cæ	16	337	11	O he:	30	2383
6	R n	2	8				

Dist	Mean (m)	Var (m)	Max (m)	Dist	Mean (m)	Var (m)	Max (m)
1, 11	109, 477	146,006	212, 719	4, 9	133, 446	173, 046	255, 808
1,4	14, 576	0	14, 576	5, 10	55, 642	328, 973	2, 415, 622
1,8	293,078	0	293,078	5, 11	34, 362	118,063	1,063,245
2, 10	1500	2777	12,075	5,7	8564	39, 313	267,034
2, 11	11, 257	84, 761	1,023,086	5, 8	11, 348	20, 908	76, 762
2,4	2549	3654	12,689	5, 9	13, 957	0	13, 957
2, 5	10,001	17, 305	52, 276	7, 10	5850	7080	31, 996
2,7	13, 171	20, 661	44,042	11, 7	41, 265	132, 648	637, 270
2, 8	58,703	118,024	269, 712	7,8	2265	4143	11,631
3,4	59, 156	73	59, 207	8,10	15, 221	26, 122	77,098
4,10	12, 583	84, 028	986, 741	11, 8	223, 333	1, 214, 825	8, 328, 956
4, 11	23, 340	110, 415	1,066,120	8,9	761, 691	951, 360	1, 828, 952
4,5	124, 336	548, 462	2, 517, 981	9, 10	66, 511	98, 627	235, 890
4,6	601	1315	5516	11, 9	468, 275	466, 053	1, 245, 493
4,7	5894	11, 273	56, 182	11, 10	20, 986	109, 772	1, 125, 060
4,8	6966	18, 875	77, 229				

Table 4 Mean, Variance and Ma in dist(i, j)

for he atometer γ , which are $\gamma = m$, $\gamma = m + v$, $\gamma = m + 1.5v$ and $\gamma = max$, where m, v, and max are mean, var, and max in Table 4, se eciel.

5.1.2 findMaxCTR vs findApproxMaxCTR

In α de α e al a e he effec i ene of he $\frac{\alpha}{2}$ o alg α i hm ha lice $\langle a | e c \alpha$ ie from he abo e 11 da a e , $\frac{\alpha}{2}$ e define *eca*, *eci i*, and *c e e e* a E . 12, 13, and 14. *recall* $\langle e \rangle \langle e e n$ he abili of $\frac{\alpha}{2}$ hich he $\frac{\alpha}{2}$ o alg α i hm can $\langle e c \alpha \rangle$ e *e c* α ie $\langle a | e \rangle$ and 14. *recall* $\langle e \rangle \langle e e n$ he abili of $\frac{\alpha}{2}$ hich he $\frac{\alpha}{2}$ o alg α i hm can $\langle e c \alpha \rangle$ e *e c* α ie $\langle a | e \rangle$ and 14. *recall* $\langle e \rangle \langle e e n \rangle$ he abo e 11 da $a = \langle precision \rangle$ can ho $\frac{\alpha}{2}$ he deg ee of $\frac{\alpha}{2}$ hich $\circ k CTR$ con ain $\alpha \langle a | e \rangle \alpha$ ie in Geolife; *completeness* i he deg ee ha one com le $e \langle a | e \rangle \alpha \langle e c \alpha \rangle$ a $\alpha \langle a | e \rangle \alpha$.

$$recall = num_a/num_b \tag{12}$$

Where num_b i hen mber of α cajec α ie in he e da a e and num_a i hen mber of α cajec α ie fond b one of he χ_0 algorithm. In hi e α imen, $num_b = 32$ d e o o al 32 α cajec α ie in he da a e.

$$precision = num_c/k \tag{13}$$

Where num_c i hen more of com le e cajec α ie ha con ain a α cajec α ; $k \in f \alpha$ o o k com le e cajec α ie canked b E . 4.

$$completeness = \frac{|label(CTR) \cap (userTra)|}{|label(userTra)|}$$
(14)

Where he f nc ion *label(.)* $\epsilon \epsilon n$ he e of ϵ an α a ion mode in a ϵ ajec α ; *label(userTra)*| i he n mber of label ha a ear in a $\epsilon \epsilon$ ajec α *userTra* in he da a e; and *label(CTR)* \cap *label(userTra)*| i he n mber of label ha a ear bo h in CTR and *userTra*.

Fig. 11 *nbayes* \mathfrak{E} *findMaxCTR* on \mathfrak{c} igh \mathfrak{c} ajec \mathfrak{a} ie

5.2 Evaluation on CameraTrajectory

5.2.1 Data set and parameter setting

In he da a e, a < ajec α con i of am le oin ha α e genera ed b < oad afe camera, % hich < ec α d inf α ma ion of ehicle ha a b hem. The da a e ha 10,104 < ajec α ie and 12,741,728 am le oin o α h ee mon h a G an, China. Since % e do no kno% % hich < ajec α ie in he da a e can be liced in ad ance, f α com ing effec i ene of he alg α i hm, % e man all elec 104 < ajec α ie from he da a e a e < ajec α ie and < andoml li he e < ajec α ie in o 568 < ajec α ie . Af α he % o alg α i hm < n, % e ob α e ho% man com le e < ajec α ie (*CTR*) con ain he e e < ajec α ie . Th , % e can com α e *recall, precision,* and F_1 be % een he % o alg α i hm . B e ing he hold *speed* = 1 (m/) and *distance* = 10,000 (m), all < ajec α ie in he da a e α e li in o b-< ajec α ie . So, here i a o al of 10,568 < ajec α ie (*TR*) and 1,812,568 b-< ajec α ie (*STR*) in he da a e .

5.2.2 findMaxCTR vs findApproxMaxCTR

Wi h he α ame $\alpha \gamma = 5000 \text{ m}$, here 1 of $findMaxCTR \alpha$ $findApproxMaxCTR \alpha$ e hogen in Fig. 12, give e (d = 7, p = 0.9), (d = 14, p = 0.9), (d = 28, p = 0.9), and (d = 38, p = 0.9) are he for go of α ame α in findApproxMaxCTR. findMaxCTR find o al 13,581 go of liceable rajec α ie . Hoge α , i recall i abo 20% a hogen in Fig. 12a, beca e man liceable rajec α ie fond b i do no a i f he f nc ion is SplicePath o ha he α e di c α ded.

Com a ed $\frac{1}{2}$ i h*indMaxCTR*, *findApproxMaxCTR* find a <0 ima e ma imal liceable <a jec α ie $\frac{1}{2}$ hind a e no checked b *isSplicePath*. Therefore, i ha a higher *recall* han *findMaxCTR* $\frac{1}{2}$ hen d i bigger. For e am le, $\frac{1}{2}$ hen d = 38 and p = 0.9, i *recall* are 82% on *completeness* = 1 and 93% on *completeness* = 0.85, <e eci el. Ho $\frac{1}{2}$ e d = 7, i ha a lo $\frac{1}{2}$ e higher recall beca e he code on Line 2 8 < ne man branche ha con ain liceable <a jec α ie in Alg α i hm 5. So, if d i in a <e a onable < ange, *findApproxMaxCTR* i m α <= 0 b han *findMaxCTR* beca e i a <0 ima <<e large no fil e ed b Defini ion 5.

When elec ing he fix $4000 \le 1$ fond b he χ_0 algori hm, he seci ion of he χ_0 algori hm are ill sa ed in Fig. 12b. Com ared χ_0 in *findApproxMaxCTR*, *findMaxCTR* can find more escajecorie al hoghi ha a oor abili of find escajecorie χ_0 in high

Fig. 12 findMaxCTR & findApproxMaxCTR

com le ene . According o he F1 core on Fig. 12c, findApproxMaxCTR \mathcal{K}_{i} h he fi ed a ame α (d = 28 and p = 0.9) i be α han findMaxCTR. Ho \mathcal{K}_{i} α , eaching for he cigh a ame α all e i α co ble ome ince i need o c man differen a ame α all e . So, from he ie \mathcal{K}_{i} of im lici, findMaxCTR i a good choice.

The ime of *findMaxCTR*; nning on GeoLife (138 *TR*) i abo 160s, \mathcal{C} hile i ime on Came a Trajec α (10568 *TR*) i abo 2816s, a ho \mathcal{C} n in Fig. 7b and 12d. Ho \mathcal{C} e α , i

Le el	DT-∢ee		<i>DF</i> -∢ee		
	# of DTNode	Avg size(kb)	# of DFNode	Avg size(kb)	
1	13	39,002	12	33,124	
2	6	39,831	5	43,695	
3	3	37,905	2	87,141	

Table 5 Com onen in $DT \rightarrow ee$

DT- ς ee and he DF- ς ee boh ha eh e le el of node e cehek ς ood node. The i e of he B^+ - ς ee and he DT-inde a e 137 Mb and 1.65 Gb, ς e e ci el , af e con ς cing he \Im o inde e. Table 5 li he de ail of he DT-inde. The i e of DTNode in differen le el a e almo he ame beca e, according o E . 15, longer he ime, maller he change in he di join ime e of a ς ajec α . How e e, he change of i e be geen DFNode a differen le el i big, beca e here i a ignifican difference be geen he go neighboring $\neg DT_i$ o ha he i e of DF_i i large ba ed on $DF_i^n = \neg DT_i^n - \neg DT_i^{n-1}$. Al ho gh he i e of he DT-inde i e large, ome lo le da a com ς e ion algori hm, e.g., Lem elZi (LZ) com ς e ion algori hm, can deœ ea ei i e. B LZ78 algori hm, he i e of he DT-inde change from 1.65 Gb o 700 Mb.

A men ioned ex lix in *queryDTsTR*, if $T_2 = 0$, i *Gill* exch he di join ime e of all cajec orie in he B^+ -cee (called *ITQ* e). If $T_1 = 0$, i *Gill* exch all he di join ime e in he *DT*-inde (called *DTQ* e). Af \propto *ITQuery* and *DTQuery* \leq n 10 ime in different ime in \propto al (8, 24, 40 da), and 3 mon h), here a \propto age ime i hogon in Fig. 13.

A $\alpha \in n \mid DTQuery \in n$ fa $\alpha \in han ITQuery$ beca e he ime com le i of DTQueryi $O(N^2)$ while he ime com le i of ITQuery i $O(M^2)$, and $M \gg N$. A he α ime g o \mathcal{Q}_{α} , M become bigger b N doe no change. So, he main fac α ha affec he ming ime of DTQuery i onl he I/O ime of ς eading he di join ime e from he DT-inde while he main $\hat{M\alpha}$ eo e, he inde e ba ed on B^+ -cee [37] and R-cee [18,33,35,40] can efficien 1 coce he e of ime in e al. Al ho gh he e inde e can coce he e, he canno efficien 1 deal \mathcal{G}_{i} h he e of ime-di join e beca e, in each e, he onl α o each in a ecific ime in e al no in m 1 i le ime in e al o ha he need man e ie of ime in e al o di co e he e cajec α ie \mathcal{G}_{i} ho e ime a e di join.

In addi ion o he di join ime con ϵ ain on ϵ ajec α ie, liceable ϵ ajec α ie ϵ e ire ha he ga di ance be % een hem are clo e eno gh ha he con i e a com le e ϵ ajec α . S mbolic ϵ ajec α ie [13], % hich gi e a conce al ie% o nder and ario beha i α of he mo ing objec [30], can ca ϵ e he e liceable ϵ ajec α ie b a e ence of imede enden label. The mbolic ϵ ajec α of a mo ing objec i $\epsilon e \epsilon$ e en ed a a e ence of ni $\langle u_1, u_2, \ldots, u_n \rangle$, % here u_n i a air $\langle t, s_b, s_e, l \rangle$ in % hich *i* i a ime in er al, s_b and s_e are he loca ion of % o end oin of he ni, and *l* i a label. F α e am le, f α he ca e in Sec. 1, he mbolic ϵ ajec α of *Bob* i he e ence $\langle ([8:00-8:20], H, A, walk), ([8:$ $23-9:14], A, B, subway), ([9:16-9:21], B, C, walk), \ldots \rangle$.

G ing e al. [13,29,35,40] α ea e he da a model of mbolic \langle ajec α ie and heir inde e o off α o α a ion o each \langle ajec α ie b he abo e e ence of ime-de enden label. More eciall, he eo α a ion α o α e \langle ie e mbolic \langle ajec α ie \mathbb{Z} hich a i f he condition of he ime in α al, a ial di ance, and a e ence of label. For e am le, he \langle e i al SQL of Bob \langle an i ion from \mathbb{Z} alk o b \mathbb{Z} a i 'select pid from Case1 where trans matches' * $X(_walk) Y(_subway)*//Y.start-X.end \leq duration(0.9000000)' and pid = Bob$. In α de o ma ch he mbolic \langle ajec α from he da aba e, he α m kno \mathbb{Z} he e ence of label in ad ance. Ho \mathbb{Z} e α , in he a α , he e ence of label i nkno \mathbb{Z} n before he α begin o \langle e \langle ie e liceable \langle ajec α ie . So, mbolic \langle ajec α me hod do no a 1 o α ie for he liced mode.

6.2 Trajectory pattern analysis and mining

The liced model need o find g o liceable $\langle a | e c \alpha | e c \alpha$ of em. a α n mining and cajec α cl α ing bo h find g α of mo ing objec ba ed on Gro imilar i of heir cajec α ie in a cerific ime in α al, ch a flock [8,9,36], con e [19], ‰m [27], g∙o [26], ga hering [45], and cajec α cl ering me hod [24,25]. The e me hod define differen di ancef nc ion o e al a e he imilari be \mathcal{L} een cajec α ie, and de ign corre onding cl e algori hm o di co e gro of imilar (ajec or ie . Hoge er, he e me hod a e no fi o find g o of liceable cajec α ie beca e he find imilar vajec α mining a ge a a igning vale of a el co-ba ed \mathcal{X}_{eigh} of edge [15,16,42] and a h [3,44] ha are free en l < a er ed b < a jec α ie, \mathcal{Q}_{a} here he < a el co can be < a el

1305

ime α f el con m ion [11,12]. Ho $\chi_e \propto$, onl f e en l $\alpha \propto$ ed edge and a h a e iden ified, χ_h ich canno be ed di ec l o iden if liceable α ice α .

From he ie $\frac{1}{2}$ of ceco exing com le existence of i a liceable cajec of i one of he α a ion mode in he α com le α ajec α . So, di co α ing liceable α ajec α ie need o decide \mathscr{G}_{h} here o here a jec or is can lice \mathscr{G}_{h} here ere a jec or based on here information abo ime, location, and α and α at ion mode. The approximation information information in the second seco 28,31,46] eem o be able o make he abo e deci ion ince he e me hod can cedic a er loca ion, infer hi can or a ion mode, and cedic 2/hen and 2/here he 2/jill change mode [28] ba ed on he kno $\frac{2}{3}$ ajec α information. Ho $\frac{2}{3}$ er, he e me hod are no good a dealing % i h he coblem of licing m l i le cajec o ie o% ing o he % ofollo% ing cea on One i ha he coblem of cajec or licing ac on he differen da a o ce Zhile $c_{ajec} \propto infection = nec me hod ac on a ingle da a o ce. In m l i le da a o ce , each da a$ o ζ ce ha a differen ID code and con ain ζ ajec α ie of one ζ an α a ion mode, and i i diffic l o knog in ad ance ghe her cajec orie from differen da a o ce belong o a e mo emen. So, he model of he coblem i no b il on a e hi α cajec α . M α e ecificall, i i im o ible o con he cobabili ha one e Zi che one can o a ion mode o ano he. B , a ingle da a o ce make cajec α inference me hod kno $\frac{\pi}{2}$ e com le e cajec α o ha he can α ea e heir model ba ed on α hi α cajec α .

The o her i ha he ha e differen goal. The goal of $o \in \mathcal{X}_{\alpha} \propto k i$ o mach cajec α ie o ha he can f α mone go, \mathcal{X}_{α} hile he goal of cajec α inference me hod i o cedic a α location, infer hi can α ation mode, and o on. From he ie \mathcal{X}_{α} of a i ical learning, $o \in \mathcal{X}_{\alpha} \propto k$ i he claring coblem, \mathcal{X}_{α} hile cajec α inference me hod are he cegre ion coblem. Preference learning i able o iden if driargo \mathcal{X}_{α} i himilar driing ceference and hard be in cajec α in order her cajec α in the inference is a state of the case of the case

The f $\langle ajec \alpha | inking(FTL) [38] i$ cloe $o \circ \langle \sqrt[4]{\alpha} k$. I find air of $\langle ajec \alpha ie ha$ belong o he ame mo ing objec b he $\sqrt[4]{\alpha}$ me hod : (α_1, α_2) -fil e ing and na e Ba e ma ching. Com ared $\sqrt[4]{\alpha}$ h $\circ \varsigma$ me hod , FTL can link (lice) $\sqrt[4]{\alpha}$ $\langle ajec \alpha ie ha$ ed on he di ς ib ion of di ance be $\sqrt[4]{\alpha}$ en an $\sqrt[4]{\alpha}$ ime- α der oin from he $\sqrt[4]{\alpha}$ ς $ajec \alpha ie$, ς e ec i el . So, i a oid he di join ime con ς ain in $\circ \varsigma \sqrt[4]{\alpha}$ k o ha i can lice $\sqrt[4]{\alpha}$ $\langle ajec \alpha ie$ e en if heir b- ς ajec α ie o e la $\sqrt[4]{\alpha}$ h each o her in ime. Ho $\sqrt[4]{\alpha}$ e e, i doe no α m l i le ς ajec α ie licing efficien l beca e he $\sqrt[4]{\alpha}$ abo e me hod $\sqrt[4]{\alpha}$ ll be in alid a m α e ς ajec α ie are in ol ed in a liced ς oce . Ne e hele , $\circ \varsigma$ me hod can

lice m l i le cajec α ie . D i α iden ifica ion i al o imilar o o c $\langle \alpha \alpha k \rangle$ in he en e ha i al o cie o iden if cajec α ie from differen d i α . Ho $\langle \alpha \alpha \kappa \rangle$, i foc e on learning di inc i e ce ce en a ion of d i ing beha i α and hen cl α he ce ce en a ion [20], b ignore di join ime and a ial clo ene .

7 Conclusion

In hi a α , χ_e d he coblem of cajec α licing, χ_h ich cecon c c indi id al com-

For f $\zeta e \not (\alpha k, i i of in \alpha e) \circ e$ end he liced degree b con idexing on her fac α , ch a hen more of he b-sajec $\alpha i e$, and he ha e of he b-sajec $\alpha i e$, or e al a e her ali of hesecons c ed indi id al com le esajec α . I i al o of in αe or a alleli e [41] her so or ed algorithm or integration of the efficience and osela her integration constaints of e end her liced model or include more indi id al α ial sajec $\alpha i e$.

Acknowledgements We to ld like o hank P: ofe α Chr i ian S. Jen en f α ef l di c ion and commen . Thi to the fourth of the comparison of the compariso

Appendix A Computing disjoint time set

Lemma In the query interval time T, the disjoint time set DT_i of each trajectory TR_i can be computed by Eq. 6.

Proof Le $Q_i^{k,d}$ be a cajec ∞ e the each cajec ∞ TR a each in T and i ime in α al e ti(TR) doe no o e la ti TR_i doe 11 15188-33.91659927in.0003234.600006103(R)Tj 7.1929992j -(b)9890e no im

Proof Le P_c which i fond b existPath be a a h from STR_k^v o STR_i^j . We fix 1 <0 e have m e i a a h P_l from STR_k^v o STR_i^j in he c <0 en g a h STLC-DAG. P_l i an imeor devel e ence where each $STR \in \{STR_m^n | ti(STR_k^v).st < ti(STR_m^n).st < ti(STR_i^j).st, m \in M(P_c)\} \cup \{STR_k^v, STR_i^j\}$. And, $M(P_c)$ i a e of TR ha P_c have a ed hroghe ce i and k. We <0 e he <0 blem according o he following i a ion.

If $|M(P_c)| = 0 \propto |M(P_c)| = 1$, P_c m be P_l .

If $|M(P_c)| \ge 2$, o $e P_l$ doe no e i in he $c \ll en STLC$ -DAG. Le P_a be he a h con ain he ma im m n mbe of STR from P_l , where $M(P_c) \subseteq M(P_a)$. Then, a lea one $e \in STR_m^n$ from P_l i no on P_a . According o ime, le STR_m^n be be ween $P_a[i]$ and $P_a[i+1]$, namel $ti(P_a[i]).st < ti(STR_m^n).st < ti(P_a[i+1]).t$, where $P_a[i](P_a[j])$ i a $i h \alpha j h STR$ in $P_a, m_i(m_{i+1})$ i he b α i of $P_a[i](P_a[i+1])$, and $m_i, m_{i+1} \in m(P_c)$. Therefore, before e nning he $c \ll en$ air, he algorithm ha e e c ed e al a ion of he work of $P_a[i], STR_m^n$ and $\langle STR_m^n, P_a[i+1] \rangle$. The e al a ion genera ed work of $P_a[i+1]$, i how TR_m and $TR_{m_i}(TR_{m_{i+1}})$ canno be liced. So, $m_i \notin SP_m \alpha m_{i+1} \notin SP_m$. According o exist Path (Algorithm 3), i canno find ha a a h con ain $STR_m_i(STR_{m_{i+1}})$ and STR_m . I concadic with P_a ha ha he ma im m n mbe of STR from P_l . Therefore, P_l model.

Then, ince P_l from STR_k^v o STR_i^j e i in STLC-DAG, i im lie ha have m e i a ah P_b from he ave o STR_k^v in he c and STLC-DAG. And, P_b con ain all STRof TR be given he ave e and $STR_k^v(P_c)$ have a ed hrough he e TRs). This is because he algorithm have considered and $STR_k^v(P_c)$ have a ed hrough he e TRs). This is because imilar o P_a be given STR_t^r and STR_k^v or given by a here of the end of

Lemma 5 If and onl if a a h fo nd b $alg\alpha i hm 3 con ain b-cajec \alpha ie from <math>\chi_0^{\circ}$ differen cajec αie , he χ_0° cajec αie can be liced.

Proof If here e i a a h, \mathcal{Z}_{hich} i fond b Alga i hm 3, be \mathcal{Z}_{een} an \mathcal{Z}_{00} b- $\mathfrak{c}_{ajec} \alpha$ ie from $\mathcal{Z}_{00} \mathfrak{c}_{ajec} \alpha$ ie , \mathfrak{c}_{e} e c i el, accading o Lemma 4, he $\mathfrak{c}_{ajec} \alpha$ ie ha he a h a ed hrogh can be liced \mathcal{Z}_{i} h he \mathcal{Z}_{00} b- $\mathfrak{c}_{ajec} \alpha$ ie. So, he \mathcal{Z}_{00} b- $\mathfrak{c}_{ajec} \alpha$ ie can be liced. Accading o he definition 6, if \mathcal{Z}_{00} b- $\mathfrak{c}_{ajec} \alpha$ ie are liceable b- $\mathfrak{c}_{ajec} \alpha$ ie, here e i a liced a h ha can a hrogh all b- $\mathfrak{c}_{ajec} \alpha$ ie of he $\mathcal{Z}_{00} \mathfrak{c}_{ajec} \alpha$ ie. \Box

Theorem 1 If there exists a directed edge between two trajectories, the two trajectories can be spliced.

Proof S o e here i an edge be $\mathscr{U}_{een} STR_i^j$ and STR_m^n , \mathscr{U}_{hich} he $\mathscr{U}_{o} STR$ belong o TR_i and TR_j , εe ec i el, and TR_i canno be liced \mathscr{U}_{o} in TR_m . According o Lemma 5, a lea one ai of STR from he $\mathscr{U}_{o} TR$, εe ec i el, canno be connec ed b a a h ha i fo nd b *exist Path*. B, a Algori hm 2 (Line 10) m ha e dele ed all edge be $\mathscr{U}_{een} TR_i$ and TR_j if i find ha a ai be \mathscr{U}_{een} hem canno be connec ed b a a h. Therefore, here i no an edge be \mathscr{U}_{een} hem. I constance he a m ion ha here i an edge be $\mathscr{U}_{een} STR_i^j$ and STR_m^n .

Theorem 2 For each $SP_i \in SP$, where SP is one of output parameters of Algorithm 2, SP_i is a set of trajectories that can be spliced with the trajectory TR_i .

Proof A initiali ed ha e of Algori hm 2, SP = DT. S o e one SP_i ha a b or m, and i corre onding TR_m canno be liced \mathcal{Z}_i h TR_i . According o Lemma 5, here i no a a h be \mathcal{Z}_i een one air $\langle STR_i^j, STR_m^n \rangle$. And, $SP_i = SP_i - m$ (Line 12 in Algori hm 2), ha been e ec ed. I conradic \mathcal{Z}_i h SP_i beca e SP_i con ain m.

Lemma 6. In SP- e g a h, a cli e i a g o of liceable < ajec α i e, a ma imal cli e i a com le e < ajec α .

Proof A g o of liceable ς ajec α ie can be direc 1 α indirec 1 liced $\frac{\omega}{2}$ h each o her. Therefore, here e i an edge be $\frac{\omega}{2}$ een an $\frac{\omega}{2}$ of hem. So, herg o of liceable ς ajec α ie i a cli e in herg a h. If he cli e i herma imal cli e, herg o of liceable ς ajec α ie on herma imal cli e canno be con ained b o herg o . So, herma imal cli e in herg a h i a com le e ς ajec α *CTR*.

References

- 1. Bakalo P, Hadjielef hetio M, Tota VJ (2005) Timetela ed a io em α al tajec α join. In: Poceeding of he 13 h ann al ACM in et na ional $\chi_{\alpha} k$ ho on geogra hic inf α ma ion em , ACM, Ne $\chi_{\alpha} Y \alpha k$, NY, USA, 182 191
- 2. Dai J, Yang B, G \circ C, Ding Z (2015) Pe onali ed $\circ \circ \circ \circ$ ecommenda ion ing big \circ ajec α da a. In: 2015 IEEE 31 in e na ional conference on da a enginee ing, 543 554
- 3. Dai J, Yang B, G o C, Jen en CS, H J (2016) Pa h co di sib ion e ima ion ing sajec α da a. R oc VLDB Endo $\frac{\alpha}{2}$ 10(3):85 96
- 4. Ding Z, Yang B, Cĥi Y, G o L (2016) Enabling mar (an α aion) em : a arallel a io- em α al da aba e a (coach. IEEE Tran Com) 65(5):1377 1391
- Emrich T, Kriegel HP, Mamo li N, Ren M, Z fle A (2012) Q e ing ncer ain a io- em or al da a. In: 2012 IEEE 28 h in e na ional conference on da a engineering, 354 365
- 6. E ein D, L_offler M, S a h D (2010) Li ing all ma imal cli e in a e g a h in near-o imal ime. In: Algori hm and com a ion, no. 6506 in lec ce no e in com œ cience, S cingœ Bœ lin Heidelbæ g, 403 414
- 7. Goh CH, L H, Ooi BC, Tan KL (1996) Inde ing em α al da a ing e i ing B+-cee. Da a Kno ²/₄ Eng 18(2):147 165
- G dm nd on J, an Ke eld M (2006) Com ing longe d < a ion flock in < ajec α da a. In: Proceeding of he 14 h ann al ACM in e na ional m o i m on ad ance in geogra hic infα ma ion em , ACM, Ne% Yα k, NY, USA, 35 42
- 9. G dm nd on J, an Ke eld M, S eckmann B (2004) Efficien de ec ion of mo ion a en in a ioem α al da a e . In: Proceeding of he 12 h ann al ACM in e na ional ¾α k ho on geogra hic infα ma ion em , ACM, Ne% Yα k, NY, USA, 250 257
- 10. G o C, Jen en CS, Yang B (2014) To fard o al caffic a far ene . SIGMOD Rec 43(3):18 23
- G o C, Yang B, Ande en O, Jen en CS, Tox K (2015) Ecoma k 2.0: em o % aring eco-ro ing % i h ehic lar en ironmen al model and ac al ehicle f el con m ion da a. GeoInforma ica 19(3):567 599
- 12. G o C, Yang B, H J, Jen en CS (2018) Learning o co e % h ar e cajec or e . In: IEEE 34 h in e na ional conference on da a engineering, 1073 1084
- G ing RH, Vald F, Damiani ML (2015) S mbolic < ajec αie . ACM Tean S a Algαi hm S 1(2):7:1 7:51
- 14. HCormen T, ELei er on,

99871(34 h

- Je ng H, Yi ML, Zho X, Jen en CS, Shen HT (2008) Di co e of con o in cajec α da aba e. 1:1068-1080
- 20. Kie T, Yang B, G o C, Jen en CS (2018a) Di ing i hing cajec α ie from differen dri er ing incomle el labeled cajec α ie . In: Proceeding of he 27 h ACM in e na ional conference on infα ma ion and kno gadege managemen, 863 872
- Kie ^T, Yang B, Jen en CS (2018b) O lie de ec ion for m l idimen ional ime e ie ing dee ne cal ne ⁴/₂₀ k. In: IEEE 19 h in e na ional conference on mobile da a managemen, 125 134
- 22. Kie^{*}T, Yang B, G o C, Jen en CS (2019) O lie de ec ion for ime erie $\frac{4}{34}$ h ec er en a oencoder en emble . In: 28 h in e na ional join conference on ar ificial in elligence
- 23. Ka e B, V gen J (2012) Combina a ial o imi a ion, alga i hm and combina a ic , ol 21. S singer, Berlin
- 24. Lee JG, Han J, Whang KY (2007) Trajec α cl exing: a ari ion-and-gro frame % ark. In: Proceeding of he 2007 ACM SIGMOD in exina ional conference on management of da a, ACM, Ne % Yα k, NY, USA, 593 604
- 25. Lee JG, Han J, Li X (2015) A nif ing frame % ak of mining sajec α a α n of a io em α al igh ne . IEEE Fran Kno % Da a Eng 27(6):1478 1490
- 26. Li X, Ceik e V, Jen en C, Tan KL (2013) Effectie online gro di co e in cajec α da aba e . IEEE Tran Kno & Da a Eng 25(12):2752 2766
- Li Z, Ding B, Han J, Ka R (2010) S^w₄ m: mining ela ed em or al mo ing objec cl e . Proc VLDB Endo^w₄ 3:723 734
- Liao L, Pa e on DJ, Fo D, Ka H (2007) Learning and infecting can or a ion o ine. A: if In ell 171(5 6):311 331
- 29. Sak MA, G ing RH (2011) S a io em o al a en e ie . GeoInfo ma ica 15(3):497 540
- 30. S acca ie a S, Paren C, Damiani ML, de Macedo JA, Por o F, Vangeno C (2008) A conce al ie on a cajec or ie. Da a Knogl Eng 65(1):126 146
- S H, Zheng K, H ang J, Wang H, Zho X (2014) Calib: a ing cajec α da a fα a io- em α al imilari anal i. VLDB J 24(1):93 116
- 32. S n J, Tao Y, Pa adia D, Kollio G (2006) S a io- em α al join elec i i . Inf S 31(8):793 813
- 33. Tao Y, Pa adia D (2001) MV3: -Fee: A a io- em α al acce me hod fα ime am and in α al α ie . In: Proceeding of he 27 h in α na ional confα ence on α large da a ba e , Mα gan Ka fmann P bli hα Inc., San Franci co, CA, USA, 431 440
- 34. Tomi a E, Tanaka A, Takaha hi H (2006) The $\chi \alpha$ -ca e ime com le i f α gene a ing all ma imal cli e and com a ional e e imen . The α Com Sci 363(1):28 42
- 35. Vald F, G ing RH (2014) Inde α ed a en ma ching on mbolic sigec α ie. In: Proceeding of he 22Nd ACM SIGSPATIAL in en a ional conference on ad ance in geogra hic infα ma ion em, ACM, Ne% Yα k, NY, USA, 53 62
- 36. Vieka MR, Bakalo P, Toka VJ (2009) On-line di co e of flock a en in a io- em α al da a. In: Proceeding of he 17 h ACM SIGSPATIAL in en a ional conference on ad ance in geogra hic infα ma ion em, ACM, Ne% Yαk, NY, USA, 286 295
- 37. Wang L, Zheng Y, Xie X, Ma ŴY (2008) A fle ible a io- em α al inde ing cheme fα læge- cale GPS <ack<e<ie>cie
 al. In: 9 h in e na ional confe ence on mobile da a managemen, IEEE, 1 8
- 38. W H, X e M, Cao J, Kara P, Ng WS, Koo KK (2016) F cajec α linking. In: IEEE 32nd in α na ional confα ence on da a engineα ing, IEEE, 859 870
- 39. Xie K, Deng K, Zho X (2009) From cajec α ie o ac i i ie : a a io- em α al join a coach. In: Proceeding of he 2009 in e na ional $\frac{\alpha}{\kappa}$ k ho on loca ion ba ed ocial ne $\frac{\alpha}{\kappa}$ k , ACM, Ne $\frac{\alpha}{\kappa}$ Y α k, NY, USA, 25 32
- 40. X J, G ing RH, Zheng Y (2015) The TM-RT ee: an inde on gene ic mo ing objec fα cange e ie . GeoInfα ma ica 19(3):487 524
- Yang B, Ma Q, Qian W, Zho A (2009) TRUSTER: sijec α da a soce ing on cl e. In: DASFAA, 768 771
- 42. Yang B, G o C, Jen en CS, Ka 1 M, Shang S (2014) S ocha ic k line: o e lanning ndæ ime- æ ing ncæ ain . In: IEEE 30 h in æ na ional confæ ence on da a engineæ ing, 136 147
- 43. Yang B, G o C, Ma Y, Jen en CS (2015) To % ard e onali ed, con e -a % are: o ing. VLDB J 24(2):297 318
- 44. Yang B, Dai J, G o C, Jen en CS, H J (2018) PACE: a a h-cencic acadigm for ocha ic a h finding. VLDB J 27(2):153 178
- 45. Zheng K, Zheng Y, Y an N, Shang S, Zho X (2014) Online di co e of ga he ing a en o e cajecαie. IEEE Tran Kno & Da a Eng 26(8):1974 1988
- 46. Zheng Y (2015) Trajec $\hat{\alpha}$ da a mining: an o $\hat{\alpha}$ iet \mathcal{A} ACM Tran In ell S Technol 6(3):1 41

- 47. Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining in œ ing loca ion and <a el e ence from GPS <a jec α ie . In: Proceeding of he 18 h in œ na ional confœ ence on ¾α ld ¾de ‰eb, ACM, Ne‰ Yα k, NY, USA, 791 800</p>
- 48. Zheng Y, Xie X, Ma WY (2010) Geolife: a collabor a i e ocial ne ¾ king α ice among α, loca ion and < ajec α . IEEE Da a Eng B Il 33(2):32 39</p>
- 49. Zho P, Zhang D, Sal berg B, Coo er man G, Kollio G (2005) Clo e air erie in mo ing objec da aba e. In: Proceeding of he 13 h ann al ACM in erna ional ¾ k ho on geogra hic information em, ACM, Ne% Yα k, NY, USA, 2 11

Publisher's Note S singer Na secontain ne sal \mathcal{U}_{i} hs egasd o j si dictional claim in bli hed ma and in i tional affiliation.

Qiang Lu cecei ed a B.S. deg ee from Shen ang Uni et i of Chemical Technolog, Shen ang, China, in 2000 and a Ph.D. deg ee from China Uni et i of Pecole m-Beijing, China, 2006. From 2015 o 2016, he Ga a i i ing cholar a he De ar men of Com er Science, Aalborg Uni et i, Denmark. He i creat and A ocia i e Profe or in he De ar men of Com er Science and Direc or of Com a ion In elligence Cen er a China Uni er i of Pecole m, Beijing. He i al o a fac 1 member in Beijing Ke Lab of Pecole m Da a Mining. Hi re earch in er incl de a ial-em or al da a coce ing, e olionar com ing, and machine learning.

Rencai Wang
cecei ed a B.S. deg ee from China Uni et i of
Pe
cole m-Ea China, in 2014 and an M.S. deg ee from China Uni-
et i of Pe
cole m-Beijing, China, in 2017. He i c

cen 1 % aking a a of % are engineer a IFLYTEK CO., LTD,
ce on ible for da a anal i and mining on ed ca ion, and he de elo men of he ed -
ca ion clo d la form. Hi
ce earch in ere incl de a ial em or al da a managemen,
sajec or com ing, and da a mining on beha ior of he ed ca ional er.

Bin Yang i a Rofe α in he De α men of Com α Science a Aalb α g Uni α i , Denmark. He $\frac{\alpha}{2}$ a A α h Uni α i , Denmark and a Ma Planck In i e f α Informatic , G α man . He ς cecie ed he Ph.D. degree in com α cience from F dan Uni α i . Hi ς e earch in α e incl de machine learning and da a managemen . He $\frac{\alpha}{2}$ a a PC co-chair of IEEE MDM 2018. He ha α ed on ς og am commi ee and a an in i ed ς e ie $\frac{\alpha}{2}$ f α e α al in α nai ional conf α ence and jo ς nal , incl ding ICDE, IJCAI, TKDE, he VLDB Jo ς nal, and ACM Com ing S ς e .

Zhiguang Wang ceci ed a B.S. degree in h ic from Inner Mongolia N α mal Uni et i in 1986, an M.S. degree in com et metering from Jilin Uni et i in 1994, and a Ph.D. degree in com et cience from China Uni et i of Petole m-Beijing. He i cetter a Rofe et in he De at men of Com et Science a China Uni et i of Petole m, Beijing, et et a Director of Refeator Goo of Large Scale Da a Roce ing and Vi ali a ion. He i al o a fac 1 member in Beijing Ke Lab of Petole m Da a Mining, and a concil member in Beijing Ed ca ion Federa ion. Hi cetter et et chine et include da a managemen, di tib ed et m, and a ial- etm or al da a mining.