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a b s t r a c t

This paper discusses a special kind of hybrid system, named hybrid parametric system,
which subsystem is characterized by parameters of model function. The parameters of
model function represent the batch operation (discrete control). The joint optimization
of both continuous and discrete control variables is named hybrid parametric optimal
control problem. The corresponding necessary optimality conditions are established in
the form of the hybrid parametric minimum principles, which are proposed and proved
in this paper. The first principle, i.e. single stage hybrid parametric minimum principle,
is proved based on the similar technique used by the proof of the classical Pontryagin
maximum principle, and the second principle, multistage hybrid parametric minimum
principle, is proved by reducing it into a nominal case of first principle. Moreover, in the
virtue of the continuity of parameter space, the hybrid parametric minimum principle
only requires a prescribed number of switching times.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid systems [1–3] are systems whose dynamics involve a combination of continuous evolution and discrete
transitions. More specifically, hybrid systems are described by a collection of control systems and a finite sequence of
times (called switching times) which partitions the time interval into subintervals. On each subinterval, the state of the
system flows in accordance with one of the systems from a given collection; at a switching time, the state experiences
an instantaneous jump, and another system from the collection is selected for the next subinterval. While providing a
richer modeling framework than the continuous control systems, hybrid systems are definitely more difficult to analysis
and control.

The optimal control problem is one of the most important issues in the study of control systems. The minimum
principle, also called the maximum principle in the pioneering work of Pontryagin et al. [4], is a milestone of control
theory. A general framework of hybrid optimal control problem [5] is established and the minimum principle is
generalized for hybrid system, which is called the hybrid minimum principle [6–9]. To ensure the validity of the hybrid
minimum principle in a non-degenerate form, some hypotheses are introduced [10,11]. Then by performing first order
variational analysis via the needle variation methodology, the necessary optimality conditions are established.

When the continuous control is absent, the system can only be optimized by choosing switching sequence and
switching times [12,13]. Another important special case arises when the dynamical system is piecewise affine and the
cost functional is quadratic [14,15]. When the differentiability of hybrid optimal control problems takes a weaker form,
the corresponding nonsmooth hybrid minimum principle could also be obtained [16]. Moreover, the minimum principle
could also be extended to a general class of stochastic hybrid systems [17–19
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Since the dynamic programming is of equal importance as the minimum principle, a unified general framework of
hybrid dynamic programming [20–24] is also studied. Within this general framework, it is proved that along optimal
trajectories of a hybrid system, the costate in the hybrid minimum principle, and the gradient of the value function
in hybrid dynamic programming are equal almost everywhere, which is also true for classical control problem [25,26].
In analytic mechanics, if there are holonomic constraints, the dimensions of mechanical system could be reduced by
generalized coordinates. In other words, the mechanical system is considered in a submanifold of original Euclidean space.
This intrinsic representation has a higher level of generality. Hence, casting the maximum principle in the framework of
manifolds greatly elucidates the essence of the maximum principle [27,28]. Conceivably, the hybrid minimum principle
could also be described in geometric language [29,30].

The hybrid systems usually refer to the systems composed by finite subsystems. Such hybrid systems arise in various
application domains, including robotics [31], production control [32], power converters [33], hybrid vehicle [34]. However,
there is another kind of hybrid system in chemical industry, which switching is caused by the batch operations, such as
fed-batch operation of bioprocess [35,36] and the addition of CO promoter in the fluid catalytic cracking unit (previous
work by the authors) [37–39]. The batch operations, which take places only in some time instants, change system’s
model function during a time span. Since the batch operation could be regarded as the parameters of the main model
function, the subsystem could be represented by these parameters. Therefore, it is called hybrid parametric system. In
continuous chemical industry, the batch operation is usually treated as an auxiliary means to ensure system’s security
and stability, while the continuous operation is the main method to maximum the unit’s profit. Since the batch operation
means consumption of some resources, the hybrid parametric optimal control problem usually has an extra cost term,
and the separated optimization of continuous and discrete control fails to exploit the potential profit. Thus, the joint
optimization of both continuous and discrete control variables is needed, which requires the optimality conditions for
the hybrid parametric optimal control problem, i.e. the hybrid parametric minimum principle (Theorem 3).

The existing hybrid minimum principle [6–9] is constructed for hybrid systems consisting finite subsystems. Since the
topology of these hybrid systems is separate, variations of a model sequence generate trajectories ‘‘far’’ from the original
one. Hence, the hybrid minimum principle only gives local necessary optimality conditions for a given model sequence.
For hybrid parametric system, the subsystems are infinite and can be indexed by the discrete control. Since the integration
optimization of continuous and batch operations wishes to provide an optimal trajectory of continuous operations and
an optimal sequence of batch operations, the existing hybrid minimum principle is useless in this case, as it requires
a given sequence of batch operations. In fact, the index of hybrid parametric system can be treated as a parameter of
model function, and it is topologically continuous. Hence, stronger optimality conditions could be expected for the hybrid
parametric optimal control problem, which is given by Theorem 3. Without requiring a given model sequence, hybrid
parametric minimum principle gives globally necessary optimality conditions for the hybrid parametric optimal control
problem under given switching times, but it has an extra property (d) than the hybrid minimum principle. Furthermore,
the proof of Theorem 3 is based on Theorem 2, namely single stage hybrid parametric minimum principle, and Theorem 2
extends the classical Pontryagin maximum principle [4] to the hybrid parametric optimal control case. The canonical
optimal control problem assumes that an admissible control could take any value of control set at any time, which is the
reason that guarantees the needle-like variation works, while the hybrid parametric optimal control problem has an extra
global constraint on the batch operation (discrete control), i.e. constancy constraint. Hence, the extension of Pontryagin
maximum principle is needed, which gives rise to Theorem 2. As the requirements on the discrete control are stronger,
the minimality condition for the discrete control (property (d) of Theorem 2) takes a weaker form than the minimality
condition of continuous control (property (c) of Theorem 2).

The rest of this paper is organized as follows: In Section 2.1, the conception and mathematical description of hybrid
parametric optimal control problem are proposed; In Section 2.2, the single stage hybrid parametric minimum principle is
proposed and proved based on the similar technique used by the proof of the classical Pontryagin maximum principle. In
addition, five remarks are given; In Section 2.3, multistage hybrid parametric minimum principle is proposed and proved
by reducing it to a single stage hybrid parametric optimal control problem, and then four remarks are given; In Section 3,
two analytic examples of hybrid parametric optimal control problems are provided, which corroborates the validity of
the proposed principles.

2. Hybrid parametric minimum principle

The hybrid parametric optimal control Problem A is given at Section 2.1, then the corresponding optimality conditions
described by Theorem 3 are given at Section 2.3, which is based on the intermediate Theorem 2 given at Section 2.2.

2.1. Statement of hybrid parametric optimal control problem

The hybrid control system consists a collection of (time-invariant) control systems

o: {ẋ = f q(x(t), u(t)), q ∈ Q } (1)

where Q is an index set; x(t) ∈ Rn is the state, and is an absolutely continuous function of t; u(t) ∈ U ⊂ Rm is the
continuous control variable or continuous operation, where the control set U is a compact set. To guarantee local existence
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and uniqueness of solutions for (1), it is assumed that f (·) is continuous in u(t) and C1 in x(t); ∂f /∂x is continuous in u(t);
and u(t) is a piecewise continuous function (Actually it only requires measurable and locally bounded). Obviously, f (·) is
locally Lipschitz in this case. For the time variant version, if f (·) are C1 in t , then it could be transformed into autonomous
version by introducing the extra state variable xn+1: = t , with the dynamics ẋn+1 = 1.

If the cardinality of set Q is finite, then the hybrid system is usually called switched system. The corresponding hybrid
minimum principle [6–9] is given by assuming that the model sequence {q} is defined and fixed in that the elements
in control systems o are topologically separate. Variations of this sequence generate trajectories which are ‘‘far’’ from
the given one. Hence, they cannot be compared by methods of analysis. In this paper, the cardinality of the set Q is ℵ1.
The model function f q(·) is distinguished by parameters u ∈ U ⊂ Rl, where U is a compact set, and u is also called
discrete control variables or batch operation. Then control system o could be written as {ẋ = f (x(t), u(t), u)}, named
hybrid parametric system. Moreover, it is assumed that the control system o shares the same continuous control set U
and discrete control set U .

The second ingredient is a collection of switching constraint surfaces Sx(t−i ),x(t+i ) ⊂ R2n, i = 1, . . . , k, and an endpoint
constraint surface Ex(t0),x(tf ) ⊂ R2n. In this paper, a surface D in Rn is defined by the equality constraints

h1(x) = h2(x) = · · · = hm(x) = 0 (2)

where hi(x), i = 1, . . . ,m, are C1 functions from Rn to R. Assuming that the optimal solution x∗(t) is a regular point of
constraint surface in the sense that the gradients ∇hi(x), i = 1, . . . ,m, are linearly independent at x∗(t). Then, the tangent
space of the constraint surface at x∗(t) can be describe as

Tx∗(t)D = {d ∈ Rn
⏐⏐ (∇hi(x∗(t))

)T
· d = 0, i = 1, . . . ,m} (3)

where d is a tangent vector to D at x∗(t). The vector v⊥Tx∗(t)D equals

v ∈ span{∇hi(x), i = 1, . . . ,m} (4)

The cost functional has the form

J(u(t), ui, ti) =

k∑
i=0

(∫ ti+1

ti

Li(x(t), u(t), ui)dt + φi(ui)
)

+

k∑
i=1

Φi−1,i(x(t−i ), x(t+i )) (5)

where Li: Rn
× U × U → R is the running cost, which is continuously differentiable in x(t), φi: Rl

→ R is the resource
consumption term for discrete control variables ui and Φi−1,i: Rn

×Rn
→ R is the switching cost between two periods, and

is continuously differentiable. For simplicity, there is not a terminal cost, as terminal cost can be easily incorporated into
the above running-plus-switching cost along the lines. Finite sequences {ti} and {ui} are referred as the time sequence
and discrete control sequence, respectively.

A function x: [t0, tf ] → Rn is an admissible trajectory of hybrid parametric system corresponding to a continuous
control u: [t0, tf ] → U and a sequence of discrete control u0, u1, . . . , uk ∈ U if there exist time instants t0 < t1 < · · · <
tk < tk+1 = tf such that x(·) satisfies

ẋ = f (x(t), u(t), ui), ∀t ∈ (ti, ti+1), i = 0, 1, . . . , k (6)(
x(t0)
x(tf )

)
∈ Ex(t0),x(tf ) (7)(

x(t−i )
x(t+i )

)
∈ Sx(t−i ),x(t+i ), i = 1, . . . , k (8)

Here x(t−i ) and x(t+i ) are the values of x(·) right before and right after ti, respectively, and the value x(ti) is taken to
be equal to one of these one-sided limits, depending on the desired convention. The function u: [t0, tf ] → U defined by
u(t): = ui for t ∈ [ti, ti+1) describes the evolution of u along the trajectory. Then equation (6) could be rewritten more
concisely as

ẋ = f (x(t), u(t), u(t)) for t ̸= ti, i = 0, 1, . . . , k (9)

Hybrid parametric optimal control problem could be described as:

Problem A.

min J(u(t), {ui}, {ti}) =

k∑
i=0

(∫ ti+1

ti

Li(x(t), u(t), ui)dt + φi(ui)
)

+

k∑
i=1

Φi−1,i(x(t−i ), x(t+i ))

s.t. ẋ = f (x(t), u(t), u(t)) for t ̸= ti, i = 0, 1, . . . , k.(
x(t0)
x(tf )

)
∈ Ex(t0),x(tf )
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x(t−i )
x(t+i )

)
∈ Sx(t−i ),x(t+i ), i = 1, . . . , k

where the technical assumptions are satisfied as discussed before and t0 is given (tf can be free or given).

The hybrid parametric optimal control problem consists in finding a continuous control and two discrete sequences
that minimizes the cost (5) subject to the constraints (7)–(9). To obtain optimality conditions for Problem A, the several
theorems need to be established first.

2.2. Single stage hybrid parametric minimum principle

This section establishes a theorem, which gives the optimality conditions for a special case of Problem A (k = 1). The
theorem that we are about to established is based on the following basic canonical autonomous optimal control problem
and the corresponding minimum principle.

Problem B.

min J(u(t)) =

∫ tf

t0

L(x(t), u(t))dt + Φ(x(t0), x(tf ))

s.t. ẋ = f (x(t), u(t))(
x(t0)
x(tf )

)
∈ Ex(t0),x(tf )

where the technical assumptions are satisfied as discussed before and t0 is given (tf can be free or given).

The corresponding optimality conditions are given by the following theorem [4,40,41].

Theorem 1 (Pontryagin Minimum Principle for Problem B). Let u∗: [t0, tf ] → U be an optimal control (in the global sense) of
Problem B and let x∗: [t0, tf ] → Rn be the corresponding optimal state trajectory. Then there exists a piecewise continuously
differentiable vector function p∗: [t0, tf ] → Rn, named costate, and having the following properties:
(a) p∗(t) satisfies the adjoint equation:

ṗ∗
= −

∂

∂x
H(x∗, u∗, p∗) (10)

where Hamiltonian H: Rn
× U × Rn

→ R is defined as

H(x, u, p) = L(x, u) + pT (t) · f (x, u) (11)

(b) transversality condition:(
p∗(t0)
−p∗(tf )

)
+ ∇Φ(x∗(t0), x∗(tf ))⊥T(x∗(t0)

x∗(tf )

)Ex(t0),x(tf ) (12)

(c) minimality condition: for all t ∈ [t0, tf ]

u∗(t) = arg min
u(t)∈U

H
(
x∗, u, p∗

)
(13)

(d) constancy condition (‘‘energy preservation law’’): for all t ∈ [t0, tf ]

H
(
x∗, u∗, p∗

)
= c (14)

where c is a constant. If tf is free, then c = 0.

For hybrid parametric system, u could be treated as the index of a subsystem or a discrete control variable for
nominal control system. Instead of considering multistage hybrid parametric optimal control problem, single stage hybrid
parametric optimal control Problem C is considered here, which is very similar to Problem B.

Problem C.

min J(u(t), u) =

∫ tf

t0

L(x, u, u)dt + φ(u) + Φ(x(t0), x(tf ))

s.t. ẋ = f (x(t), u(t), u)(
x(t0)
x(tf )

)
∈ Ex(t0),x(tf )

where the technical assumptions are satisfied as discussed before and t0 is given (tf can be free or given).
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The corresponding optimality conditions are given by Theorem 2.

Theorem 2 (Single Stage Hybrid Parametric Minimum Principle for Problem C). Let u∗
∈ U and u∗: [t0, tf ] → U be an optimal

discrete and continuous control of Problem C (in the global sense) and let x∗: [t0, tf ] → Rn be the corresponding optimal state
trajectory. Then there exists a piecewise continuously differentiable vector function p∗: [t0, tf ] → Rn, named costate, and having
the following properties:
(a) p∗(t) satisfies the adjoint equation:

ṗ∗
= −

∂

∂x
H(x∗, u∗, u∗

, p∗) (15)

where Hamiltonian H: Rn
× U × U × Rn

→ R is defined as

H(x, u, u, p) = L(x, u, u) + pT (t) · f (x, u, u) (16)

(b) transversality condition:(
p∗(t0)
−p∗(tf )

)
+ ∇Φ(x∗(t0), x∗(tf ))⊥T(x∗(t0)

x∗(tf )

)Ex(t0),x(tf ) (17)

(c) minimality condition for continuous control variable: for all t ∈ [t0, tf ]

u∗(t) = arg min
u(t)∈U

H
(
x∗, u, u∗

, p∗
)

(18)

(d) minimality condition for discrete control variable:

u∗
= arg min

u∈U

(∫ tf

t0

H
(
x∗, u∗, u, p∗

)
dt + φ(u)

)
(19)

(e) constancy condition (‘‘energy preservation law’’): for all t ∈ [t0, tf ]

H
(
x∗, u∗, u∗

, p∗
)

= c (20)

where c is a constant. If tf is free, then c = 0.

Theorem 2 will be proved based on similar techniques used by the proof of Theorem 1.

Proof of Theorem 2. Let function u(t): = u for all t ∈ [t0, tf ], i.e. u(t) is a constant function with value u. Introducing a
new control variable

v(t) =
(
uT (t) uT (t)

)T
∈ U × U ⊂ Rm

× Rl (21)

then Problem C is transformed into Problem C′, which follows as

Problem C′.

min J(v(t)) =

∫ tf

t0

L(x, v)dt + φ(v) + Φ(x(t0), x(tf ))

s.t. ẋ = f (x(t), v(t))(
x(t0)
x(tf )

)
∈ Ex(t0),x(tf )

where the technical assumptions are satisfied as Problem C, except that the last l components of control variable v(t) are
constant.

Obviously, Problem C′ is very similar to Problem B. Following the same process as the proof of Theorem 1 [4,40,41],
which introduces the Lagrange multiplier p(t), named costate, then the Hamiltonian, which is identical with (11), is given
by

H(x, v, p) = L(x, v) + pT (t) · f (x, v)

The optimality conditions are obtained by comparing optimal solution with perturbated trajectory, which requires
applying variations δv(t), δx(t0) and δtf on the optimal solution. Since the original problem is a minimality problem, it
follows

δJ(·) ≥ 0 (22)

By analyzing the (22) and the constraint conditions, the properties (a), (b), and (e) of Theorem 2 could be derived,
because these properties have identical formations as Theorem 1. However, since the constraints of Problems C′ and B
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on the control variables are different, the deduction of properties (c) and (d) cannot be exactly copied. Fortunately, the
following inequality still holds∫ tf

t0

H(x∗, v, p∗)dt + φ(v) ≥

∫ tf

t0

H(x∗, v∗, p∗)dt + φ(v∗) (23)

where v(t) is the perturbated control variable. The properties (c) and (d) are obtained by applying two different kinds of
perturbation.

For continuous control component u(t), which is the case considered in Theorem 1, the perturbation should be taken
as needle-like variation (McShane variation), which has the form

u(t) =

{u∗(t), if t0 ≤ t ≤ ti
u′, if ti < t < ti + ∆t
u∗(t), if ti + ∆t ≤ t ≤ tf

(24)

where u′
∈ U . Then the first kind of perturbated v(t) follows by

v(t) =
(
uT (t) u∗T (t)

)T
(25)

By (23), it follows that∫ ti+∆t

ti

H
(

x∗,

(
u′T , u∗

T
)T

, p∗

)
dt ≥

∫ ti+∆t

ti

H
(
x∗, v∗, p∗

)
dt (26)

By mean value theorems for definite integrals, there exists τ ∈ [ti, ti + ∆t],

H
(

x∗(τ ),
(

u′T , u∗
T
)T

, p∗(τ )
)

∆t ≥ H
(
x∗(τ ), v∗(τ ), p∗(τ )

)
∆t (27)

Let ∆t → 0 and ti takes any time in [t0, tf ], it has

u∗(t) = arg min
u(t)∈U

H
(

x∗,

(
uT , u∗

T
)T

, p∗

)
(28)

which completes the proof of property (c) of Theorem 2.
Since the u(t) is a constant vector, the perturbation of this component cannot be taken arbitrarily at any time t . It

must assure that the perturbated variable is still an element of the control set, which requires that the perturbation must
be globally equal. Hence the perturbation of u(t) should be described as

u(t) = u′
, for t0 ≤ t ≤ tf (29)

where u′
∈ U . Then the second kind of perturbated v(t) follows by

v(t) =
(
u∗T (t) uT (t)

)T
(30)

By (23), it follows that∫ tf

t0

H
(

x∗,

(
u∗, u′T

)T
, p∗

)
dt + φ(u′) ≥

∫ tf

t0

H
(
x∗, v∗, p∗

)
dt + φ(u∗) (31)

It is identical with the following expression

u∗(t) = arg min
u(t) ∈ U
u(t) = const

∫ tf

t0

H
(

x∗,
(
u∗, u

)T
, p∗

)
dt + φ(u) (32)

which completes the proof of property (d) of Theorem 2.

Remark 1. When L(·) and f (·) is differentiable with respect to u(t) and (18) obtains the extremum at the interior point,
which can be trivially satisfied when u(t) ∈ Rm, then the (18) is identical with

∂

∂u
H
(
x∗, u∗, u∗

, p∗
)

= 0 (33)

Similarly, when L(·), f (·) and φ(·) is differentiable with respect to u and (19) obtains the extremum at the interior
point, which can be trivially satisfied when u ∈ Rl, then the (19) is identical with∫ tf

t0

∂

∂u
H
(
x∗, u∗, u∗

, p∗
)
dt +

∂

∂u
φ(u∗) = 0 (34)
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Remark 2. Theorem 2 could be treated as an extension of Theorem 1 to hybrid parametric optimal control case.
Traditionally, the control variable u(t) is a piecewise continuous function with range U , which means an admissible
control of u(t) could take any value of U at any time t ∈ [t0, tf ]. This property is exactly the reason that guarantees
the needle-like variation works. Hence, even for time-variant U(t), the minimality property (c) of Theorem 1 still holds.
Unfortunately, there are some cases that the needle-like variation will not work, such as the constancy constraint discussed
above. Those cases have extra global constraints besides pointwise constraint. For example, u̇ = 0 for all t ∈ [t0, tf ],
which is case considered by Problem C or

∫ tf
t0

g(u)dt = c , where g(·) is a measurable and essentially bounded function
and c is a constant. The needle-like variation requires that the perturbation only takes place at small region while other
regions remain unchanged. However, this perturbation will certainly break the global constraint of special control variable.
Hence, the corresponding minimality property for those control variables only takes a weaker form, which is similar to
the minimality property (d) of Theorem 2.

Remark 3. There are two well-known analysis methods to solve dynamic optimization problem, which are minimum
principle and dynamical programming. The dynamical programming is based on the Bellman’s principle of optimality,
which states that an optimal policy has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision. This classical theorem
is based on the same assumption as the minimum principle that the control variable is free of global constraints. Therefor
a sub-trajectory of a Problem C’s optimal trajectory will not be guaranteed to be an optimal trajectory, i.e. Theorem 2
has not its counterpart in dynamical programming. The counterexample is given by the following example.

Considering a car travels through x0 to xf , which has the distance

S = xf − x0 (35)

The speed, which is the model function, is described by

ẋ = uu (36)

where u ∈ [0, uu
], i.e. the discrete control variable, is some sort of accelerator, and u(t) ∈ [ul, uu

] is the normal continuous
control variable. The cost function follows as

min J(u(t), u) =

∫ T

0
dt + u (37)

which means to minimize travel time while saving accelerator resource. Apparently, for any u > 0, the optimal continuous
control variable is given by

u∗(t) = uu > 0 (38)

then cost function is given by

J(u) =
S

uuu + u (39)

Assuming uu is big enough, then the optimal discrete control variable follows as

u∗
= arg min J(u) =

√
uu

S
(40)

Obvious, the optimal value of u depends on distance S, thus it will not be optimal at its sub-trajectory. Take half trajectory
as an example, the optimal value of u is given by

u∗

half =

√
2uu

S
̸=

√
uu

S
(41)

Remark 4. For the state constrained cases, the corresponding Lagrange multipliers could be invited, and the corresponding
properties could be obtained by comparing with the classical state constrained minimum principle.

Remark 5. u has dual roles, which could be interpreted as a discrete control variable or a parameter of the model function.
Hence there is also another routine to prove Theorem 2, which restates Problem C as a following problem.

Problem D.

min J(u(t); u) =

∫ tf

t0

L(x, u; u)dt + φ(u) + Φ(x(t0), x(tf ))

s.t. ẋ = f (x(t), u(t); u)
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x(t0)
x(tf )

)
∈ Ex(t0),x(tf )

where the technical assumptions are satisfied as discussed before and t0 is given (tf can be free or given).

For simplicity, here gives a proof of Theorem 2 in a special case, which assumes that the conditions for (33) and (34)
hold, Φ(·) = 0, x(t0) = x0, and x(tf ) is free.

Proof of Theorem 2. Treat u as a parameter, and solve Problem D by Theorem 1, then the optimal solution is
parameterized by u, and denote it by a upper star sign. Since Theorem 1 holds for any given parameter u, it holds for
optimal parameter u∗. Therefore, the properties (a), (b), (c) and (e) of Theorem 2 hold by the properties (a), (b), (c) and
(d) of Theorem 1.

Since conditions for (33) and (34) hold, and u∗ gives the extremum of J∗(u), it follows that

0 =
dJ∗(u∗)

du
=

∫ tf

t0

((
∂x∗

∂u

)T
∂L∗

∂x
+

(
∂u∗

∂u

)T
∂L∗

∂u
+

∂L∗

∂u

)
dt +

∂φ

∂u
(42)

By definition, it follows that

∂H∗

∂x
=

∂L∗

∂x
+

(
∂f ∗

∂x

)T

p∗ (43)

∂H∗

∂u
=

∂L∗

∂u
+

(
∂f ∗

∂u

)T

p∗ (44)

By (42)–(44), it gives that

0 =

∫ tf

t0

[(
∂x∗

∂u

)T
(

∂H∗

∂x
−

(
∂f ∗

∂x

)T

p∗

)
+

(
∂u∗

∂u

)T
(

∂H∗

∂u
−

(
∂f ∗

∂u

)T

p∗

)
+

∂L∗

∂u

]
dt +

∂φ

∂u
(45)

According to the property (a) of Theorem 1, (33) and (45), it gives that

0 =

∫ tf

t0

[
−

(
∂x∗

∂u

)T

ṗ∗
−

(
∂f ∗

∂x
∂x∗

∂u
+

∂f ∗

∂u
∂u∗

∂u

)T

p∗
+

∂L∗

∂u

]
dt +

∂φ

∂u
(46)

By means of integration by part, it follows that∫ tf

t0

(
−

(
∂x∗

∂u

)T

ṗ∗

)
dt = −

(
∂x∗

∂u

)T

p∗

⏐⏐⏐⏐⏐
tf

t0

+

∫ tf

t0

((
d
dt

(
∂x∗

∂u

)T
)

p∗

)
dt (47)

By the definition of the model function, it gives that

d
dt

(
∂x∗

∂u

)
=

∂

∂u
ẋ∗

=
df ∗

du
=

∂f ∗

∂x
∂x∗

∂u
+

∂f ∗

∂u
∂u∗

∂u
+

∂f ∗

∂u
(48)

Because x(t0) is given, it follows that

∂x
∂u

⏐⏐⏐⏐
t=t0

= 0 (49)

By transversality conditions of Theorem 1, it follows that

p∗(tf ) = 0 (50)

Combining (48), (49) and (50), (47) gives that∫ tf

t0

(
−

(
∂x∗

∂u

)T

ṗ∗

)
dt =

∫ tf

t0

(
∂f ∗

∂x
∂x∗

∂u
+

∂f ∗

∂u
∂u∗

∂u
+

∂f ∗

∂u

)T

p∗dt (51)

Due to (46) and (51), it follows that∫ tf

t0

(
∂L∗

∂u
+

(
∂f ∗

∂u

)T

p∗

)
dt +

∂φ

∂u
=

∫ tf

t0

∂H∗

∂u
dt +

∂φ

∂u
= 0 (52)

which completes the proof of property (d) of Theorem 2.
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2.3. Multistage hybrid parametric minimum principle

The optimality conditions for Problem A are given by Theorem 3.

Theorem 3 (Multistage Hybrid Parametric Minimum Principle for Problem A). Let {t∗i }, i = 1, 2, . . . , k, {u∗

i } ∈ U, i =

0, 1, . . . , k and u∗: [t0, tf ] → U be an optimal time sequence, optimal discrete and continuous control variable of Problem A
and let x∗: [t0, tf ] → Rn be the corresponding optimal state trajectory. Then there exists a piecewise continuously differentiable
vector function p∗: [t0, tf ] → Rn, named costate, and having the following properties:
(a) p∗(t) satisfies the adjoint equation in every stage:

ṗ∗
= −

∂

∂x
Hi(x∗, u∗, u∗

, p∗), ∀t ∈ (t∗i , t
∗

i+1), i = 0, 1, . . . , k (53)

where Hamiltonian Hi: Rn
× U × U × Rn

→ R is defined as

Hi(x, u, u, p) = Li(x, u, u) + pT (t) · f (x, u, u) (54)

(b) transversality condition:(
p∗(t0)
−p∗(tf )

)
⊥T(x∗(t0)

x∗(tf )

)Ex(t0),x(tf ) (55)

(
−p∗(t∗−

i )
p∗(t∗+

i )

)
+ ∇Φi−1.i(x∗(t∗−

i ), x∗(t∗+

i ))⊥T(x∗(t∗−

i )
x∗(t∗+

i )

)Sx(t−i ),x(t+i ), i = 1, . . . , k (56)

(c) minimality condition for continuous control variable:

u∗(t) = arg min
u(t)∈U

Hi
(
x∗, u, u∗

, p∗
)
∀t ∈ (t∗i , t

∗

i+1), i = 0, 1, . . . , k (57)

(d) minimality condition for discrete control variable:

u∗

i = arg min
u∈U

(∫ ti+1

ti

Hi
(
x∗, u∗, u, p∗

)
dt + φi(u)

)
i = 0, 1, . . . , k (58)

(e) constancy condition (‘‘energy preservation law’’): for all t ∈ [t0, tf ]

Hi
(
x∗, u∗, u∗

, p∗
)

= c (59)

where c is a constant. If tf is free, then c = 0.

To obtain optimality conditions of Problem A, the original problem is reduced into a Problem C by transforming all
the state and control variables to a common fixed time interval, and establishing a correspondence between admissible
trajectories of these problems.

Proof of Theorem 3. Introduce a new time τ ∈ [0, 1] and a series of transformations which map [0, 1] into different
time spans, i.e. ηi: [0, 1] → [ti, ti+1], i = 0, 1, . . . , k, from the equations:

dηi

dτ
= zi(τ )di, ηi(0) = ti (60)

where

di = ti+1 − ti ∈ Ωd = [0, tf − t0] (61)

and zi(τ ) are arbitrary measurable essentially bounded functions on [0, 1]. In order to maintain the invertibility of ηi(τ )
and ensure ηi(1) = ti+1, it requires that

zi(τ ) ∈ ℑ =

{
z(τ ) > 0|

∫ 1

0
z(τ )dτ = 1

}
(62)

Actually, z(τ ) = 1 is an obvious candidate.
By these transformations of t , the original piecewise function x(t), u(t) could be transformed into function series

y i(τ ) = x(ηi(τ )), τ ∈ (0, 1), y i(0) = x(t−i ), y i(1) = x(t+i+1), i = 0, 1, . . . , k (63)

vi(τ ) = u(ηi(τ )), τ ∈ (0, 1), vi(0) = u(t−i ), vi(1) = u(t+i+1), i = 0, 1, . . . , k (64)

The original discrete control sequence could be easily transformed into new control sequence:

ui = ui, i = 0, 1, . . . , k (65)
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Then the corresponding model functions are as follows
dy i

dτ
= dizi(τ )f (y i(τ ), vi(τ ), ui) i = 0, 1, . . . , k (66)

dηi

dτ
= dizi(τ ) i = 0, 1, . . . , k (67)

Let

L({y i}, {vi}, {ui}, {di}) =

k∑
i=0

dizi(τ )Li(y i(τ ), vi(τ ), ui) (68)

φ({ui}) =

k∑
i=0

φi(ui) (69)

Φ({y i−1(1)}, {y i(0)}) =

k∑
i=1

Φi−1.i(y i−1(1), y i(0)) (70)

then the corresponding cost function is as follows

J({vi(τ )} ,
{
ui
}
, {di}) =

∫ 1

0
L({y i}, {vi}, {ui}, {di})dτ + φ({ui}) + Φ({y i−1(1)}, {y i(0)}) (71)

Suppose that the original endpoint constraint surface Ex(t0),x(tf ) is described by

h0(x(t0), x(tf )) = 0 (72)

then the corresponding endpoint constraint surface Ey0(0),yk(1) is described by

h0(y0(0), yk(1)) = 0 (73)

Suppose that the switching constraint surface Sx(t∗−

i ),x(t∗+

i ) is described by

hi(x(t−i ), x(t+i )) = 0, i = 1, . . . , k (74)

then the corresponding endpoint constraint surface Syi−1(1),yi(0) is described by

hi(y i−1(1), y i(0)) = 0, i = 1, . . . , k (75)

The extra constraints on ηi(τ ) include endpoint constraints, which are given by

η0(0) = t0 (76)

ηk(1) = tf (77)

and continuous constraints, which are given by

ηi−1(1) = ηi(0) = ti, i = 1, . . . , k (78)

Hence, the extra endpoint constraint surfaces include Eη0(0),ηk(1), which is given by

l0(η0(0)) = η0(0) − t0 = 0 (79)

lk+1(ηk(1)) = ηk(1) − tf = 0 (80)

and Sηi−1(1),ηi(0), which is described by

li(ηi−1(1), ηi(0)) = ηi−1(1) − ηi(0) = 0, i = 1, . . . , k (81)

In order to assemble a bigger optimal control problem of type C, a bigger state variable is needed, which has the
following form

X(τ ) =
(
Y (τ )T Π (τ )T

)T
∈ R(n+1)(k+1)

= Rn(k+1)
× Rk+1 (82)

where

Y (τ ) = (yT
0(τ ) · · · yT

k (τ ))T ∈ Rn(k+1)
= Rn

× · · · × Rn  
k+1

(83)

Π (τ ) = (η0(τ ) · · · ηk(τ ))T ∈ Rk+1
= R × · · · × R  

k+1

(84)
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Otherwise, bigger continuous and discrete control variables are also needed, which are given by

V (τ ) =
(
vT

0(τ ) · · · vT
k (τ )

)T
∈ ΩV = U × · · · × U  

k+1

⊂ Rm(k+1) (85)

V =
(
ΛT DT

)T
∈ ΩV = ΩΛ × ΩΛ ⊂ R(l+1)(k+1) (86)

where

Λ =
(
uT

0 · · · uT
k

)T
∈ ΩΛ = U × · · · × U  

k+1

⊂ Rl(k+1) (87)

D = (d0 · · · dk)T ∈ ΩD = Ωd × · · · ×
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what convention is. Hence the optimal solution of Problem A could be derived from the optimal solution of Problem A′,
so are the optimality conditions.

For Problem A′, the Hamiltonian

H(X, V , V , P) = L(X, V , V ) + PT
· F (X, V , V ) (99)

where costate, composed of multi-components, is given by

P(τ ) =
(
pT

y0
(τ ) · · · pT

yk (τ ) pη0 (τ ) · · · pηk (τ )
)T

(100)

For i = 0, 1, . . . , k, let

Ĥi(y i, vi, ui, pyi , pηi ) = Li(y i, vi, ui) + pT
yi (τ ) · f (y i, vi, ui) + pηi (τ ) (101)

Hi(y i, vi, ui, pyi ) = Li(y i, vi, ui) + pT
yi (τ ) · f (y i, vi, ui) (102)

then it follows that

Ĥi(y i, vi, ui, pyi , pηi ) = Hi(y i, vi, ui, pyi ) + pηi (τ ) (103)

By (68), (89) and (101), the (99) gives that

H(X, V , V , P) =

k∑
i=0

dizi(τ )Ĥi(y i, vi, ui, pyi , pηi ) (104)

According to the property (a) of Theorem 2, the costate P(τ ) satisfies

Ṗ∗
= −

∂

∂X
H(X∗, V ∗, V

∗

, P∗) (105)

which is formed by the following components

ṗ∗

yi = −d∗

i zi(τ )
∂

∂y i
Hi(y∗

i , v
∗

i , u∗

i , p∗

yi ) i = 0, 1, . . . , k (106)

ṗ∗

ηi
= −

∂

∂ηi
H(X∗, V ∗, V

∗

, P∗) = 0 i = 0, 1, . . . , k (107)

According to the property (c) of Theorem 2, for all τ ∈ [0, 1]

V ∗(τ ) = arg min
V (τ )∈ΩV

H(X∗, V , V
∗

, P∗) (108)

which gives the following equations

v∗

i (τ ) = arg min
vi(τ )∈U

Hi(y∗

i , vi, u∗

i , p∗

yi ) i = 0, 1, . . . , k (109)

According to the property (d) of Theorem 2,

V
∗

= arg min
V∈ΩV

(∫ 1

0
H(X∗, V ∗, V , P∗)dτ + φ(V )

)
(110)

which gives the following equations

u∗

i = arg min
ui∈U

(∫ 1

0
Hi(y∗

i , v
∗

i , ui, p∗

yi )dτ + φi(ui)
)

i = 0, 1, . . . , k (111)

d∗

i = arg min
d ;vi C 04ψTdψ♭↼2↽♯uΩψ♭↩31↩91(42ψT169ψTfψ9(6

H i zi(τ )Ĥi(y ˜
i , v

∗

i ,

i ∅p ∗

yi ; p̃ηi ⇒⌈τ

×∝▷∞↦`∝▷∞∈′←∀↙∈∀∀∃←[{←∈↦↙∋▽↦←↖∞∋↙∋↦∀←[⌈←∪⇐ℵ⇒⊎[▽∝▷∞↦∈←∃↙∌△∃←[{←△↙∃↦∈←′←[⌈←∪⇐=⇒⊎[`∝▷∈′←∀↙∈∀∀∃←[{←∃↙∃′̸←′←[⌈←∪⇐′⇒⊎[`∝▷∞∃∈←∃↙∌△∃←[{←△↙∀←′←[⌈←∪⇐∅⇒⊎[`∝▷∈′←∀↙∈∀∀∃←[{←△↙̸̸←′←[⌈←∪⇐∞⇒⊎[`∝▷∞∃∈←∃↙∌△∃←[{←△↙↦∃∃←′←[⌈←∪⇐∅⇒↖∞̸↦⇐¬⇒↖∞̸̸⇐¬⇒↖∞̸↦⇐¬⇒↖∞̸↦⇐∅⇒⊎[`∝▷∞∈′←∀↙∈∀∀∃←[{←∈∞↙↦∋←′←[⌈←∪⇐∥⇒⊎[`⊗′←′←′←∇}←′←′←′←¨◁⊗∝▷∈′←∀↙∈∀∀∃←[{←∈∞∃↙∈∞△←′←[⌈←∪⇐⇐⇒⊎[↙∈↦∞

⁀⌋⌋≀∇⌈⟩\′←∀}⟩⊑⌉∫ ⊔⟨⌉ √∇≀√⌉∇⊔y ⇐⌈⇒ ≀{ [⟨⌉≀∇⌉⇕ ∈⇔
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then it follows that

d∗

i =

{
tf − t0, i = j
0, i ̸= j , i ∈ {0, 1, . . . , k} (115)

which means Problem A degenerates into a single stage hybrid parametric optimal control problem, and it is inconsistent
to the original setting. Hence d∗

i must give an extremum at its interior point. Furthermore, H(X, V , V , P) is differentiable
with respect to di, then by (112), it follows that, for i = 0, 1, . . . , k∫ 1

0

∂

∂di
H(X∗, V ∗, V

∗

, P∗)dτ =

∫ 1

0
zi(τ )Ĥi(y∗

i , v
∗

i , u∗

i , p∗

yi , p
∗

ηi
)dτ = 0 (116)

If Ĥi(y∗

i , v
∗

i , u∗

i , p∗
yi , p

∗
ηi

) =
ci

zi(τ ) , then ci = 0 by zi(τ ) > 0 and (116), which is inconsistent with hypothesis; if
Ĥi(y∗

i , v
∗

i , u∗

i , p∗
yi , p

∗
ηi

) =
c′∑k

i=0 d∗
i zi(τ )

, then c ′
= 0 by d∗

i > 0, zi(τ ) > 0 and (116), which is also inconsistent with hypothesis;
eventually, it gives that

Ĥi(y∗

i , v
∗

i , u∗

i , p∗

yi , p
∗

ηi
) = 0 (117)

According to the property (b) of Theorem 2,(
P∗(0)
−P∗(1)

)
+ ∇Φ(X∗(0), X∗(1))⊥T(X∗(0)

X∗(1)

)EX0(0),Xk(1) (118)

which is formed by the following components(
p∗

y0
(0)

−p∗
yk (1)

)
⊥T(y∗

0(0)
y∗

k(1)

)Ey0(0),yk(1) (119)

(
−p∗

yi−1
(1)

p∗
yi (0)

)
+ ∇Φi−1.i(y∗

i−1(1), y∗

i (0))⊥T(y∗

i−1(1)
y∗

i (0)

)Syi−1(1),yi(0), i = 1, . . . , k (120)

(
p∗

η0
(0)

−p∗
ηk

(1)

)
⊥T(η∗

0(0)
η∗

k (1)

)E
η0(0),ηk(1) (121)

(
−p∗

ηi−1
(1)

p∗
ηi

(0)

)
⊥T(η∗

i−1(1)
η∗

i (0)

)Sηi−1(1),ηi(0), i = 1, . . . , k (122)

By (79), (80) and (121), it follows that

p∗

η0(0) = b0
∂ l0

∂η0(0)
= b0 (123)

p∗

ηk
(1) = −bk+1

∂ lk+1

∂ηk(1)
= −bk+1 (124)

By (81) and (122), it follows that

p∗

ηi
(0) = bi

∂ li
∂ηi(0)

= −bi, i = 1, 2, . . . , k (125)

p∗

ηi
(1) = −bi+1

∂ li+1

∂ηi(1)
= −bi+1, i = 0, 1, . . . , k − 1 (126)

where bi, i = 0, 1, . . . , k + 1, are arbitrary constants. By (125) and (126), it follows that

p∗

ηi−1
(1) = p∗

ηi
(0), i = 1, 2, . . . , k (127)

According to (107), p∗
ηi

(τ ) is a constant for i = 0, 1, . . . , k. Considering (123), (124) and (126), it follows that

p∗

ηi
(τ ) = b0, τ ∈ [0, 1], i = 0, 1, . . . , k (128)

For free-time problems, there is not an endpoint constraint for ηk(1), which gives that

p∗

ηk
(1) = 0 (129)

then

b0 = 0 (130)
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By (103), (117) and (128)

Hi(y∗

i , v
∗

i , u∗

i , p∗

yi ) = −b0 (131)

By far all the counterpart properties for Theorem 3 have been obtained, then the proof of Theorem 3 could be
done by mapping G and extra transformation on costate, which is similar to the transformation of state. The forward
transformation of costate is given by

pyi (τ ) = p(ηi(τ )), τ ∈ (0, 1), pyi (0) = p(t−i ), pyi (1) = p(t+i+1), i = 0, 1, . . . , k (132)

pηi (τ ) = −c, i = 0, 1, . . . , k (133)

where c is given by (59). The backward transformation of costate is given by

p(t0) = py0
(0), p(tf ) = pyk (1), p(t) = pyi (η

−1
i (t)), ∀t ∈ (ti, ti+1), i = 0, 1, . . . , k (134)

the value of p(ti) is taken to be equal to pyi−1
(1) or pyi (0) by the same convention of state.

The property (a) of Theorem 3 could be obtained by (106); the property (b) of Theorem 3 could be obtained by (119)
and (120); the property (c) of Theorem 3 could be obtained by (109); the property (d) of Theorem 3 could be obtained
by (111); the condition (e) of Theorem 3 could be obtained by (130) and (131).

Remark 1. For some hybrid optimal control problems, the number of switch times k could be deduced by the realistic
backgrounds, such as Example 2 of Section 3. In these cases, the systems experience certain number of switching times
to reach a destination. In some other cases, the number of switching times is not known beforehand, especially when the
switching event could happen anytime, anywhere in some special cases. Actually, this is the singular case, which state
trivially satisfies switching surface. For example, the singular switching surface could be given by

Sx(t−i ),x(t+i ) = {(x(t−i ), x(t+i ))T
|x(t−i ) − x(t+i ) = 0} (135)

Since there is not jump at switching point, it seems that the switching surface is ‘‘missing’’, which makes the switching
cost Φi−1.i(·) missing, and the Li(·) and φi(·) identical for all i.

Remark 2. The hybrid minimum principle where set Q has finite cardinality only provides necessary conditions for a
trajectory x∗(·) of the hybrid control system corresponding to a control u∗(·), a time sequence {ti}, and a model sequence
{qi} to be locally optimal over trajectories x(·) with the same model sequence {qi}. Since the topology of hybrid control
system with finite index set is separate, for a perturbated x(·) to be close to x∗(·) on each subinterval (ti, ti+1), the model
sequence {qi} must remain unchanged. As the Pontryagin maximum principle, given the number of switching times k,
the hybrid parametric minimum principle proposed in this paper gives globally necessary optimality conditions. That
is because the perturbation of model sequence {f q(·)} with the same number of switching times can be compared by
methods of analysis due to the continuity of parameters.

Remark 3. In classical mechanics the Newtonian approach and the least action principle are completely equivalent.
Furthermore, by comparing the least action principle with the minimum principle, it indicates that there should be a
hybrid least action principle in physics, and it is something that is never heard of. The reason is that the hybrid setting
needs extra global messages, such as the global model sequence {qi} in finite cardinality case and global control variable
constraints, i.e. constant constraints, in hybrid parametric control case. Hence, the least action principle is the combination
of two locally based principles, which are variational principle and optimality principle. In details, at any given point the
original extremal problem is transformed into differential equations by the variational principle, and those equations are
locally ‘‘solved’’ based on the local information of a particle. Noted that this information must include all parameters it
needs, thus there is not hybrid parametric concept here; since all the local infinitesimal trajectory the particle taking is
locally optimal, the whole trajectory will be globally optimal by the optimality principle.

Remark 4. As most practical problems are too complex to allow for analytical solutions, the numerical algorithms
are inevitable for solving optimal control problems. There are two practical methods, which are adaptive dynamic
programming and direct methods. Adaptive dynamic programming based on the dynamic programming tries to solve
the optimal control problem at any state of the system, which naturally is of the close-loop form, but this method will
not work for hybrid parametric control problem by Remark 3 of Section 2.2. On the other hand, the direct methods, i.e. the
sequential method (control vector parameterization (CVP)) and simultaneous method, parameterize control variables and
transform the original problem into a nonlinear programming problem (NLP). Since the direct methods render continuous
and discrete control variables equal in the transformed NLP, it can be directly used to solve hybrid parametric optimal
problem when the number of switching times k is prescribed (k = 1 for single stage hybrid parametric problem). The
multiphase algorithm [42,43] is needed when the number of switching times cannot be prescribed. The algorithm could
be described as follows:
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Step 0: predefine a number of switching times k, then apply a direct method to calculate continuous and discrete
control variables;

Step 1: update the number of switching times k, and apply a direct method to calculate continuous and discrete control
variables;

Step 2: evaluate the solution of Step 1. If the convergence is realized, stop the algorithm, otherwise go to Step 1.

3. Analytical examples

Two analytical examples are given here to corroborates the validity of the proposed principles, and one realistic
example of hybrid parametric optimal control problem could be found in our previous work (fluid catalytic cracking
unit with CO promoter [39]).

Example 1. Consider the following single stage hybrid parametric optimal problem:

min J(u(t), u) =

∫ 1

0
[x2(t) + u2(t)]dt (136)

s.t. ẋ = x(t) − u(t) + u (137)

u(t) ∈ R, u ∈ U = [0.5, 1] (138)

Ex(0),x(1) = {(x(0), x(1))|x(0) = 0} (139)

where the technical assumptions are satisfied as Problem C.

Solution. The Hamiltonian is formed as

H(x, u, u, p) = x2
+ u2

+ p(x − u + u) (140)

By property (a) of Theorem 2, it follows that

ṗ∗
= −p∗

− 2x∗ (141)

By property (b) of Theorem 2, it follows that

p∗(1) = 0 (142)

By property (c) of Theorem 2, it follows that
∂H
∂u

= 2u∗
− p∗

= 0 (143)

Differentiate (141) with the substitution of (137) and (143), it gives that

p̈∗
− 2p∗

= −2u∗ (144)

By (139) and (141), it follows that

ṗ(0) + p(0) = 0 (145)

Solving (144) with boundary condition (142) and (145), it gives that

p∗(t) = u(−0.29e
√

2t
+ 0.73e−

√
2t

+ 1) (146)

By property (d) of Theorem 2, it follows that

u∗
= arg min

u∈U

∫ 1

0
p∗(t)udt = arg min

u∈U
0.74u2

= 0.5 (147)

With the substitution of (146) and (147), (143) gives that

u∗(t) = −0.0725e
√

2t
+ 0.1825e−

√
2t

+ 0.25 (148)

Example 2. Consider the following multistage hybrid parametric optimal problem, which is about a car traveling through
a designated point, and then returning to the original point. The control on the car is the acceleration, which is the product
of continuous and discrete control. The continuous control can be regarded as the control of accelerator and brake, and
discrete control can be regarded as some sort of accelerating mechanism, which is an expensive resource. Moreover,
arriving a designated point allows user to reassign a new value of discrete control, and triggers a variation on the cost
function. The objective is to minimize the expense of both continuous and discrete resource. The mathematics form is
given as following:

min J(u(t), u, t1) =

∫ t1

0

1
2
u2(t)dt + 48u1 +

∫ 2

t1

1
2
u2(t)dt + 49u2 (149)
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s.t. ẋ1 = x2(t) (150)

ẋ2 = uu(t) (151)
u(t) ∈ R, u ∈ R

Ex(0),x(2) =

⎧⎪⎨⎪⎩
⎛⎜⎝x1(0)
x2(0)
x1(2)
x2(2)

⎞⎟⎠
⏐⏐⏐⏐⏐⏐⏐
E1: x1(0) = 0
E2: x2(0) = 0
E3: x1(2) = 0
E4: x2(2) = 0

⎫⎪⎬⎪⎭ (152)

Sx(t−1 ),x(t+1 ) =

⎧⎪⎨⎪⎩
⎛⎜⎝x1(t−1 )
x2(t−1 )
x1(t+1 )
x2(t+1 )

⎞⎟⎠
⏐⏐⏐⏐⏐⏐⏐
S1: x1(t−1 ) − x1(t+1 ) = 0
S2: x2(t−1 ) − x2(t+1 ) = 0
S3: x1(t−1 ) − 2 = 0

⎫⎪⎬⎪⎭ (153)

where the technical assumptions are satisfied as Problem A.

Solution. Two stages’ Hamiltonian have the same form, which is as follows

H(x2, u, u, p1, p2) =
1
2
u2

+ p1x2 + p2uu (154)

The convention of values at discontinuity points is taken as right-sided limit. By property (a) of Theorem 3, it follows that

ṗ∗

1 = −
∂H
∂x1

= 0, ∀t ∈ [0, t∗1 ) ∪ [t∗1 , 2] (155)

ṗ∗

2 = −
∂H
∂x2

= −p∗

1(t), ∀t ∈ [0, t∗1 ) ∪ [t∗1 , 2] (156)

By property (b) of Theorem 3, it follows that

p∗

1(2) = λ1 (157)

p∗

2(2) = λ2 (158)

p∗

1(0) = λ4 (159)

p∗

2(0) = λ5 (160)

p∗

1(t∗−

1 ) = p∗

1(t∗+

1 ) + λ3 (161)

p∗

2(t∗+

1 ) = p∗

2(t∗+

−
) (162)

where λi, i = 1, 2, 3, 4, 5, are arbitrary constants. Solving (155) with boundary condition (157) and (161), it gives that

p∗

1(t) =

{
λ1 + λ3, t ∈ [0, t∗1 )
λ1, t ∈ [t∗1 , 2]

(163)

Solving (156) with the substitution of (163) and boundary condition (158) and (162), it gives that

p∗

2(t) =

{
−(λ1 + λ3)t + λ3t∗1 + 2λ1 + λ2, t ∈ [0, t∗1 )
−λ1(t − 2) + λ2, t ∈ [t∗1 , 2]

(164)

By property (c) of Theorem 3, it follows that

∂H
∂u

= u∗(t) + p∗

2u
∗(t) = 0 (165)

By (164) and (165), it gives that

u∗(t) =

{
u∗

1

(
(λ1 + λ3)t − (λ3t∗1 + 2λ1 + λ2)

)
, t ∈ [0, t∗1 )

u∗

2 (λ1(t − 2) − λ2) , t ∈ [t∗1 , 2]
(166)

Solving (151) with the substitution of (166) and boundary condition E2 of (152) and S2 of (153), it gives that

x∗

2(t) =

{
u∗2

1

( 1
2 (λ1 + λ3)t2

− (λ3t∗1 + 2λ1 + λ2)t
)
, t ∈ [0, t1)

u∗2
2

( 1
2 λ1(t − 2)2

− λ2t
)
+ c1, t ∈ [t1, 2]

(167)

where the constant c1 is given by

c1 = u∗2
1

(
1
2

(λ1 + λ3)t∗2
1 − (λ3t∗1 + 2λ1 + λ2)t∗1

)
− u∗2

2

(
1
2
λ1(t∗1 − 2)2

− λ2t∗1

)
(168)
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Solving (150) with the substitution of (167) and boundary condition E1 of (152) and S1 of (153), it gives that

x∗

1(t) =

{
u∗2

1

( 1
6 (λ1 + λ3)t3

−
1
2 (λ3t∗1 + 2λ1 + λ2)t2

)
, t ∈ [0, t∗1 )

u∗2
2

( 1
6 λ1(t − 2)3

−
1
2 λ2t2

)
+ c1t + c2, t ∈ [t∗1 , 2]

(169)

Where the constant c2 is given by

c2 = u∗2
1

(
1
6

(λ1 + λ3)t∗3
1 −

1
2

(λ3t∗1 + 2λ1 + λ2)t∗2
1

)
− u∗2

2

(
1
6
λ1(t∗1 − 2)3

−
1
2
λ2t∗2

1

)
− c1t∗1 (170)

By property (e) of Theorem 3, it follows that

H(x∗

2(t∗−

1 ), u∗(t∗−

1 ), u∗

1, p
∗

1(t∗−

1 ), p∗

2(t∗−

1 )) = H(x∗

2(t∗+

1 ), u∗(t∗+

1 ), u∗

2, p
∗

1(t∗+

1 ), p∗

2(t∗+

1 )) (171)

which gives that

p∗

1(t∗−

1 )x∗

2(t∗−

1 ) −
1
2
u∗2

1 p∗

2(t∗−

1 ) = p∗

1(t∗+

1 )x∗

2(t∗+

1 ) −
1
2
u∗2

2 p∗

2(t∗+

1 ) (172)

By property (d) of Theorem 3, it follows that∫ t∗1

0

∂H
∂u1

dt +
∂φ1

∂u1
= 0 (173)∫ 2

t∗1

∂H
∂u2

dt +
∂φ2

∂u2
= 0 (174)

which gives that∫ t∗1

0
p∗

2(t)u∗(t)dt + 48 = 0 (175)∫ 2

t∗1

p∗

2(t)u∗(t)dt + 49 = 0 (176)

Thus far, the solution of optimal control problem is parameterized by some constants. These constants could be obtained
by simultaneously solving the (172), (175), (176), E3, E4 of (152) and S3 of (153), then the solution of optimal control is
given by

u∗

1 = 2.21756, u∗

2 = 0.57997 (177)

u∗(t) =

{
−112.61t + 25.797, t ∈ [0, 0.46518)
9.6569t − 11.445, t ∈ [0.46518, 2]

(178)

The optimal solution and trajectory are given by Fig. 1.

4. Conclusions

In this paper, we present a special kind of hybrid system and its corresponding hybrid minimum principle. This kind of
system’s subsystem is characterized by parameters of model function, named hybrid parametric system. The parameters
of model function are the mathematics representation of the batch operation (discrete control) in chemical process. Hence,
dynamic performance of system will slightly change in every period, while the batch operation itself will bring some extra
cost. Due to the difficulty of infinite dimension optimization, the hybrid parametric optimal control problem could only
be analytically solved by necessary optimality conditions, i.e. hybrid parametric minimum principle, which is proposed
and proved in this paper as Theorem 3. Moreover, there are some remarks on each section to cover more aspects about
hybrid parametric system, and the validity of proposed theorems is verified by two analytic examples.
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Fig. 1. Optimal solution and trajectory: (a) continuous control u∗(t); (b) discrete control u∗; (c) trajectory of state x∗

1; (d) trajectory of state x∗

2 .
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