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ABSTRACT Consider the problem of clustering objects with temporally changing multivariate variables,
for instance, in the classification of cities with several changing socioeconomic indices in geographical
research. If the changing multivariate can be recorded simultaneously as a multivariate time series, in which
the length of each subseries is equal and the subseries can be correlated, the problem is transformed into a
multivariate time series clustering problem. The available methods consider the correlations between distinct
time series but overlook the shape of each time series, which causes multivariate time series with similar
correlations and opposite shapes to be clustered into the same class. To overcome this problem, this paper
proposes a two-phase multivariate time series clustering algorithm that considers both correlation and shape.
In Phase I, the discrete wavelet transform is applied to capture the wavelet variances and the correlation
coefficients between each pair of variables to realize the initial clustering of multivariate time series, where
time series with a similar correlation but opposite shape may be assigned to the same cluster. In Phase II,
multivariate time series are clustered based on shape via the symbolic aggregate approximation (SAX)
method. In this phase, time series with similar correlations but opposite morphologies are differentiated.
The method is evaluated using multivariate time series of incoming and outgoing passenger volumes from
Beijing IC card data; these volume data were collected betweenMarch 4, 2013 andMarch 17, 2013. Based on
the silhouette coefficient, our approach outperforms two popular multivariate time series clustering methods:
a wavelet-based method and the SAX method.

INDEX TERMS Multivariate time series, cluster, maximum overlap discrete wavelet transform, symbolic
aggregate approximation (SAX), urban rail transit stations.

I. INTRODUCTION
The aggregation of objects with many time-dependent vari-
ables has been considered in research on data mining, such
as the classification of cities with multiple changing socioe-
conomic indices, the identification of crop type from various
remotely sensed image series, and the categorization of the
point of interest (POI) social function based on incoming and
outgoing passenger flow series. This problem can be regarded
as a cluster determination problem in a multivariate time
series that is composed of single-variable time series of equal
length. In themultivariate time series, the single-variable time
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series may be correlated. It may not be possible to adapt the
available methods that are designed for univariate time series
to multivariate time series, even if the multivariate time series
can be treated as a single time series, because the correlations
between single-variable time series may be disregarded by
this adaptation. Hence, it is necessary to develop clustering
methods for multivariate time series.

Univariate time series clustering has been well studied in
the literature [1]–[6], whereas multivariate time series clus-
tering, for which univariate methods are not suitable, has
been less extensively addressed. The available approaches for
multivariate time series clustering can be divided into three
main categories: model-based methods, feature-based meth-
ods and shaped-based methods [7]. Model-based approaches
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assume that each time series can be represented by a known
model [8]. For example, Maharaj employed the vector autore-
gressive model to fit multivariate time series and utilized an
algorithm that was based on the p-values of hypothesis tests
to cluster time series [9]. However, it was necessary to esti-
mate the model parameters of each time series; this approach
failed to capture the correlations between the variables of the
multivariate time series. In a feature-based method, a raw
multivariate time series is represented by a lower dimen-
sional feature vector. The extracted feature vectors are then
clustered via a conventional clustering algorithm [10]–[13].
To extract feature vectors that represent a raw time series,
Ye et al. performed a generalized principal component analy-
sis (GPCA) [10], and Guo et al. [11] and Wu and Philip [12]
applied an independent component analysis (ICA). However,
they disregarded the correlations between the variables of the
multivariate time series. To overcome this problem, D’Urso
and Maharaj [13] proposed decomposing each variable of the
multivariate time series into the wavelet series on various
scales and calculating the wavelet variance at each scale. The
wavelet correlations at each scale for the multivariate time
series of every pair of variables are calculated, and thewavelet
variance and correlation coefficient are concatenated into a
single vector to represent the multivariate time series. This
approach has the advantage of constructing the time series
of wavelet features while considering the correlations. This
approach can be applied to average nonstationary time series.
However, time series with similar variances and correlation
coefficients but opposite morphologies may be clustered into
the same category. In shape-based methods, the time series
are similar in terms of time and shape. For time series with
high dimensionality, the dimension reduction technique is
typically employed to reduce the noise and simplify the
variables. Symbolic Aggregate approXimation (SAX) [14],
which was proposed by Lin et al. as a transformation func-
tion in a time series similarity measure study, boasts the
advantages of a high compression ratio, retention of data
locality details and effective dimensionality reduction. How-
ever, SAX is unable to capture the correlations between the
variables of multivariate time series.

Although a variety of approaches have been proposed
[9]–[12], [14]–[16] for multivariate time series clustering,
they either disregard the correlations between the variables
of the multivariate time series or the cluster time series with
opposite morphology in the same category. To overcome this
problem, we propose two-phase clustering of multivariate
time series based on wavelet transform and SAX (WSAX),
which has the following characteristics: 1) in Phase I, the
inherent correlations between variables of multivariate time
series are considered by using a wavelet transform to repre-
sent the wavelet features of the original time series, and 2) in
Phase II, shape-based clustering can effectively distinguish
multivariate time series with opposite morphologies. Thus,
multivariate time series with opposite shapes but similar vari-
ances and correlation coefficients can be effectively identified
and clustered into different classes.

The remainder of the paper is organized as follows:
Section 2 briefly describes the background of our proposed
method. Section 3 details the two-phase multivariate time
series clustering algorithm, namely, WSAX. The experimen-
tal results and analysis are presented in Section 4. The con-
clusions of this work are presented in Section 5.

II. BACKGROUND
In this section, we briefly describe the notations of mul-
tivariate time series, the maximal overlap discrete wavelet
transform, SAX and the similarity measure, from which our
proposed method is extended.

A. NOTATIONS AND PROBLEM
Let S represent a set of multivariate time series Si as

S = {Si : i = 1, . . . , I } (1)

Si = {siqt : q = 1, . . . ,Q; t = 1, . . . ,T }

=



si11 · · · siq1 · · · siQ1
...

...
...

si1t · · · siqt · · · siQt
...

...
...

si1T · · · siqT · · · siQT

 (2)

where Si represents the multivariate time series of the ith

object, with q (q = 1, . . . ,Q) as the variable, where t (t =
1, . . . ,T ) denotes the observation time interval. Thus, siqt
represents the observation of the ith object’s qth variable at
time t. Si is a univariate time series if q is equal to 1.

Multivariate time series clustering is defined as a specified
set of the multivariate time series S clustered into K clusters,
C1,C2, · · · ,CK , where Ci (i = 1, · · · ,K ) is the ith cluster,
which contains at least 3 objects in S.

B. WAVELET-BASED CLUSTERING OF MULTIVARIATE
TIME SERIES
The maximal overlap discrete wavelet transform (MODWT)
[13], [17], [18] is a modified version of the discrete wavelet
transform. An example of using the MODWT to analyze
time series is available in the literature [18]. Assume that
gjl, l = 0, · · · ,Lj, is a j-level wavelet filter of length Lj that
is associated with the scale τj ≡ 2j−1 and the univariate time
series Siq = (siq1, siq2, . . . , siqT ). An unbiased estimator of
the time-independent variance at scale τj is

v̂2Siq
(τj) ≡

1
Nj

∑T−1

t=Lj
Ĥ2

Siq,jt (3)

where ĤSiq,jt denotes the MODWT coefficients of the time
series Siq and Nj = T − Lj + 1 is the number of wavelet
coefficients.

The wavelet covariance of two specified univariate
time series Siq and Sik with the MODWT coefficients
ĤSiq,jt and ĤSik ,jt , respectively, is defined as v̂SiqSik (τj) ≡
cov(ĤSiq,jt , ĤSik ,jt ).

∑
∞

j=1 v̂SiqSik (τj) =cov(Siq, Sik ) if j is infi-
nite. Thus, we obtain the unbiased estimator of the correlation
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coefficient between Siq and Sik :

ρ̂SiqSik (τj) ≡
v̂SiqSik (τj)

v̂2Siq
(τj )̂v2Sik

(τj)
(4)

C. SYMBOLIC AGGREGATE APPROXIMATION (SAX)
SAX [14], [19], which was proposed by Keogh E, is an
effective discrete dimensionality reduction method of a time
series that is based on piecewise aggregate approximation
(PAA) [20]. SAX represents the conversion of a time series
of length T into a symbol string of length N (N � T ), where
N is the number of subseries. Given the univariate time series
Siq = (siq1, siq2, . . . , siqT ), SAX can be conducted via the
following three steps:

Step 1: Normalization. Each original univariate time series
Siq is normalized into S ′iq = (s′iq1, s

′

iq2, . . . , s
′
iqT ) with mean

0 and variance 1 via equation (5). The normalization does not
affect the shape or scale of the original univariate time series
Siq. [21].

s′iqt =
siqt − uSiq

σSiq

(5)

where siqt is the observed value at time t in the univariate
time series Siq, uSiq is the mean of all observed values in the
univariate time series Siq and σSiq is the standard deviation of
all observed values in the time series Siq.
Step 2: PAA dimensionality reduction. PAA is used to

divide the univariate time series Siq of length T into the
time series S̄iq =

(
s̄iq1, s̄iq2, . . . , s̄iqN

)
of length N (N�T),

according to the subseries length T/N . The mean of each
subseries is calculated via equation (6).

s̄iqn =
N
T

∑ T
N n

t= T
N (n−1)+1

s′iqt (6)

Step 3: Symbolic representation. The time series S̄iq of
the approximate Gaussian distribution can be divided into
α equiprobable intervals, and the breakpoints βi can be
obtained as specified in the literature [19]. The sequence val-
ues in the same interval are represented by the same symbol,
and the original univariate time series Siq is symbolized as
S̃iq = (̃siq1, s̃iq2, . . . , s̃iqN ).

For two univariate time series of length T , namely, Siq =

(siq1, siq2, . . . , siqT ) and Sik = (sik1, sik2, . . . , sikT ), SAX is
utilized to obtain two symbolic representations of length N :
S̃iq = (̃siq1, s̃iq2, . . . , s̃iqN ) and S̃ik = (̃sik1, s̃ik2, . . . , s̃ikN ).
Here, equation (7). Reference [19] is employed to calculate
the distance between the two symbolic representations of S̃iq
and S̃ik to determine their similarity.

MINDIST (̃Siq, S̃ik )=

√
T
N

√∑N

n=1
(dist (̃siqn−̃sikn))2 (7)

where dist (̃siqn−̃sikn) represents the distance between the two
symbols; the calculation is demonstrated in the literature [19].

FIGURE 1. Flow chart of WSAX.

III. TWO-PHASE CLUSTERING OF MULTIVARIATE
TIME SERIES
The algorithm for two-phase clustering of multivariate time
series based on wavelet analysis and SAX is denoted as
WSAX and consists of two phases. A flow chart of WSAX is
shown in figure 1.

In Phase I, the wavelet variance of each variable and the
correlation coefficient between each pair of variables of mul-
tivariate time series are calculated. The wavelet variances and
correlations are concatenated into a single vector to represent
the multivariate time series. The wavelet variance-correlation
coefficient feature vector is applied for clustering to yield
the Phase I clustering result. The advantage of wavelet anal-
ysis is that the inherent correlations between variables of
multivariate time series are considered. However, only using
wavelet features for multivariate time series clustering will
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create the problem that time series with similar variances and
covariances but opposite morphologies are clustered into the
same category. Therefore, the shape-based method SAX is
utilized to perform secondary clustering with the results of
the Phase I. In Phase II, SAX is utilized to reduce the dimen-
sionality of each variable of the multivariate time series,
and the similarity measure is applied. For each category that
was clustered in Phase I, K-means is applied to perform a
second clustering of the multivariate time series based on
shape.

A. PHASE I: WAVELET-BASED CLUSTERING OF
MULTIVARIATE TIME SERIES
For the multivariate time series of each object, first, the
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FIGURE 2. Two stations’ distributions of the hourly volumes of incoming and outgoing passengers over a two-week period.

where dL,K
ij is the Euclidean distance between the ith object

that belongs to cluster L and the jth object that belongs to
cluster K . In this paper, the mean silhouette coefficient index
over all objects (referred to as the mean silhouette coefficient
index) is used to evaluate the clustering performance.

IV. EXPERIMENTS AND ANALYSIS
A. DATA DESCRIPTION
We employ card touch in/out data from various rail transit
stations in Beijing during a two-week period fromMarch 4 to
March 17, 2013. We cleaned the data and selected 195 rail
transit stations with complete card touch in/out records for
the study.

We aggregate these data in hours according to the incoming
and outgoing directions and obtain multivariate time series of
incoming and outgoing passenger volumes. Figure 2 plots the
data from two stations (Huilongguan and Wudaokou) for two
weeks. In Figure 2(a), Huilongguan station shows a single
peak each day for each of the incoming and outgoing direc-
tions, and the daily peaks are scattered among time intervals.
On weekdays, the peaks are higher in the incoming direction
than in the outgoing direction, whereas on weekends, they
are approximately the same, except that they are substan-
tially lower on weekends than on weekdays. In Figure 2(b),
Wudaokou station shows dual peaks for both the incoming
direction and the outgoing direction, and the daily peaks are
scattered among the time intervals. The peaks in the incoming
direction are substantially lower in the morning hours than in
the evening hours; the opposite is observed for the outgoing
direction. No peaks are readily observed on weekends and the
volume of passengers is steady throughout the day.

Data preprocessing normalizes the original incoming and
outgoing time series to the time series with a mean of 0 and
a variance of 1. The incoming and outgoing time series data
for the entire period include T = 336 time points. We use

TABLE 1. Maximum and minimum ADF test result values.

the augmented Dickey-Fuller (ADF) test to perform statis-
tical tests on the stationarity of the incoming and outgoing
time series data. The ADF test results of 195 inbound and
outbound time series are less than the critical statistical values
t the 5% confidence level, and all p-values are close to zero,
which shows that the data are stationary time series. The set
of maximum and minimum ADF test result values for the
incoming and outgoing time series are shown in Table 1.

B. EXPERIMENTAL RESULTS
The multivariate time series of incoming and outgoing pas-
senger volumes for each of the 195 rail transit stations are
clustered via our method. In the experiment, the wavelet filter
is LA(8), the scale is τj = 2j−1, for j = 2, 3, . . . , 5, where j is
the number of wavelet filter layers, and the number of clusters
is K = 2, 3, . . . , 10. To avoid the local optimal solution, for
each K, we repeat K-means 100 times, calculate the average
of its silhouette coefficient, and select the maximum of the
silhouette coefficient that corresponds to K equal to 2 as the
optimal number of clusters in Phase I. The average silhouette
coefficients are listed in Table 2.

Based on the Phase I clustering results, we conduct a sec-
ond clustering according to shape for the stations of each
category. We apply SAX to the incoming/outgoing passen-
ger volume time series for a symbolic representation with a
window interval of 2 and apply equation (12) to calculate
the similarity between the rail stations. Next, we conduct
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FIGURE 3. Silhouette coefficient vs. K value.

TABLE 2. Average silhouette coefficients.

TABLE 3. Average wavelet variances and correlation coefficients for the
first category and for each cluster of Phase II clustering.

TABLE 4. Average wavelet variances and correlation coefficients for the
second category and for each cluster of Phase II clustering.

K-means clustering to yield the results of Phase II clustering
for Categories 3 and 2, according to the clustering valid-
ity index-silhouette coefficient (Figure 3) and the presence
of at least 3 stations for each cluster. The average wavelet
variance, correlation coefficient and station number for the
first category and the 3 clusters after Phase II clustering are
listed in Table 3 and those for the second category and the
2 clusters after Phase II clustering are listed in Table 4. After
the two-phase clustering has been completed, the rail transit
stations are divided into 5 clusters.

C. CONTROLLED EXPERIMENT
To evaluate and compare the clustering performances on the
multivariate time series of incoming and outgoing passenger
volumes of 195 rail transit stations, where the number of
clusters K ranges between 4 and 10, we conduct experiments
using the wavelet transform (WVC), which is proposed by
D’Urso and Maharaj [13]; SAX, which was proposed by

FIGURE 4. Silhouette coefficients vs. K values of the three clustering
methods.

Lin et al. [31]; and WSAX, which was proposed in this
paper. Figure 4 plots the silhouette coefficients versus the K
values of the three clustering methods, according to which
the silhouette coefficients are larger for WSAX than for
WVC and SAX. Hence, the WSAX clustering method is
more effective in clustering rail transit stations. Combined
with the curve characteristics of Figure 5(a)-(e), our proposed
clustering method can accurately differentiate the time series
with similar variances but opposite morphologies that were
obtained in the initial clustering, which demonstrates the
satisfactory performance of WSAX.

The larger is the silhouette coefficients that correspond
to the cluster size, the better is the clustering perfor-
mance, which can be applied to determine the cluster size.
In Figure 4, the blue broken line depicts the change in the
silhouette coefficients of the WSAX method with the cluster
size K, which shows that the silhouette coefficient is the
largest when k is equal to 5, that is, the best clustering
performance is achieved.

D. ANALYSIS OF THE CLUSTERING RESULTS
Figure 5 (a)-(e) shows the curves for 5 clusters of incoming
and outgoing passenger volumes over one week after normal-
ization (March 11-17, 2013). The 5 clusters of 195 rail transit
stations that are identified via the WSAX method are listed
in the Appendix. In Phase I, clusters 1∼3 in Figure 5(a)-(e)
are grouped into the same category, namely, Category 1, and
clusters 4 and 5 are grouped into another category, namely,
Category 2. According to Tables 3 and 4, the multivariate
time series with weak correlations (0.09-0.24) and strong cor-
relations (0.61-0.62) between incoming passenger volumes
and outgoing passenger volumes are divided into Category 1
and Category 2, respectively. However, the multivariate time
series of Category 1 in Figure 5(a) and Figure 5(b) have
opposite morphologies. The same problem is observed in
Category 2. In Phase II, this problem is effectively over-
come by applying SAX. Category 1 is divided into 3 clus-
ters, namely, cluster 1, cluster 2, and cluster 3, as plotted
in Figure 5(a)-(c), and Category 2 is divided into 2 clusters,
namely, cluster 4 and cluster 5, as plotted in Figure 5(d)-(e).

The multivariate time series with weak correlations
between incoming passenger volumes and outgoing
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passenger volumes are shown in Figure 5(a)-(c). The curves
of the incoming and outgoing passenger volumes exhibit
single peaks, except during peak periods. The five clusters,
cluster 1, which is plotted in Figure 5(a), show single peaks on
weekdays and weekends. The weekday incoming peaks last
from 3 p.m. to 9 p.m., and the weekday outgoing peaks
last from 7 a.m. to 5 p.m. The weekend incoming/outgoing
peaks last longer and are more readily observed. This finding
demonstrates that these stations are in integrated service
functional areas, namely, they are comprehensive stations
(such as stations near scenic locations and large shopping
centers). For example, Zoo Station is located near a large
attraction, the Beijing Zoo, and a transportation hub; and
Olympic Green Station and the Olympic Sports Center Sta-
tion are located near the Beijing Olympic Park and large
shopping malls, such as the XinAo Shopping Mall and Rain-
bow Shopping Mall. These stations are either located in the
same urban functional area or have similar POIs. Cluster 2,
which is plotted in Figure 5(b), shows a weekday incoming
passenger volume peak between 5 p.m. and 7 p.m. and a
weekday outgoing passenger volume peak between 8 a.m.
and 10 a.m. Weekends are similar to weekdays but with
substantially lower passenger volumes. Hence, these stations
are located in business service functional areas, namely, these
stations are business-related stations. Zhongguancun Station
and Xi’erqi Station are located in typical business areas.
Cluster 3, which is plotted in Figure 5(c), shows a weekday
incoming passenger volume peak between 8 a.m. and 10 a.m.
and a weekday outgoing passenger volume peak between
5 p.m. and 7 p.m. Weekends are similar to weekdays but with
substantially lower passenger volumes and a morphology
that is exactly the opposite that in Figure 5(b). Hence, these
stations are located in residential service functional areas,
namely, these stations are residential-related stations. For
example, Tiantongyuan Station and Huilongguan Station are
located in typical residential communities.

The multivariate time series with strong correlations
between incoming passenger volumes and outgoing passen-
ger volumes, which are depicted in Figure 5(d)-(e), show
strong dual peaks during peak hours. Cluster 4, which is
plotted in Figure 5(d), shows slightly higher morning peaks
of weekday incoming passenger volumes, with morphologies
that are opposite those of the weekday outgoing passenger
volumes. Hence, these stations are located in residential ser-
vice functional areas and business service functional areas,
and the residential function outweighs the business func-
tion, namely, these stations are primarily residential- and
secondarily business-related stations. Taoranting, Beiyuan
and Sihuidong stations, for example, are located near resi-
dential areas that also contain business areas. In cluster 5,
which is plotted in Figure 5(e), the shape is opposite that
in Figure 5(d). Hence, these stations are located in both
residential service functional areas and business service
functional areas, and the business function outweighs the
residential function, namely, these stations are primar-
ily business- and secondarily residential-related stations.

Zhichunlu, Xizhimen andWangjing stations, for instance, are
located near business areas that are mixed with residential
areas, and the business area functions outweigh the residential
area functions.

V. CONCLUSION
The available methods for clustering multivariate time series,
which contain multiple variables, are insufficient. In this
paper, we propose a two-phase multivariate time series clus-
tering algorithm, namely,WSAX,which combines the advan-
tages of feature-based and shape-based clustering methods.
WSAX not only explores the correlations between variables
but also considers the similarity in terms of the time series
morphology. Phase I obtains the wavelet variance of each
variable and the correlation coefficients between the variables
via the MODWT. Subsequently, Phase I uses the wavelet
variance-correlation coefficient feature vector for clustering.
Phase II uses SAX to reduce the dimensionality of each
variable of the multivariate time series and applies the simi-
larity measure to realize the second clustering of multivariate
time series based on shape. In the experiment, in which real
rail transit station data from Beijing IC cards are employed,
the WSAX method outperformed the WVC and SAX meth-
ods. The rail transit stations were divided into 5 clusters:
comprehensive, business-related, residential-related, primar-
ily residential- and secondarily business-related, primarily
business- and secondarily residential-related. The clustering
validity index silhouette coefficient is employed to compare
the WSAX, WVC and SAX methods, which in combination
with the clustering results that are presented in figure 5(a)-(e),
demonstrates the satisfactory performance and rationality of
the WSAX algorithm.

The experimental results demonstrated two main advan-
tages of the proposed WSAX method: 1) This method con-
siders the inherent correlations between the variables of the
multivariate time series in Phase I and re-clusters the initial
clustering results into a cluster of weak correlations between
incoming and outgoing passenger volumes and a cluster of
strong correlations. 2) This method considers the morpholog-
ical similarity of the multivariate time series in Phase II and
overcomes the problem of clustering time series with simi-
lar variances and correlation coefficients but with opposite
morphologies into the same category in Phase I. In addition,
the results provide a scientific basis of reference for studying
urban functions, planning rail transit stations, and managing
related services.

APPENDIX
Five clusters of 195 rail transit stations that were obtained via
the WSAX method are listed as follows:

Thirteen rail transit stations in cluster 1: Olympic Green
Station, Olympic Sports Center Station, Beihai North Station,
Beijing Railway Station, Beijing Zoo Station, Liangxiang
University Town Station, Liangxiang University Town North
Station, Nanluoguxiang Station, Olympic Green South Gate
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Station, Tian’anmen East Station, Tian’anmen West Station,
Wangfujing Station, and Xidan Station.

Thirty-four rail transit stations in cluster 2: Baishiqiao
South Station, Beiyuanlu North Station, Chaoyangmen Sta-
tion, Dabaotai Station, Dawanglu Station, Dengshikou
Station, Dongdaqiao Station, Dongdan Station, Dongsi
Station, Dongsishitiao Station, Fuchengmen Station, Fuxing-
men Station, Gaobeidian Station, National Library Station,
Guomao Station, China International Exhibition Center
Station, Haidian Huangzhuang Station, Hujialou Station,
Jianguomen Station, Jintaixizhao Station, Jinghailu Station,
Liangmaqiao Station, Lingjinghutong Station, Liufang Sta-
tion, Agricultural Exhibition Center Station, Rongchang-
dongjie Station, Rongjingdongjie Station, Biomedical Base
Station, Suzhoujie Station, Wanyuanjie Station, Xi’erqi Sta-
tion, Yonghegong Lama Temple Station, Yong’anli Station,
and Zhongguancun Station.

Seventy-three rail transit stations in cluster 3: Anheqiao
North Station, Babaoshan Station, Bajiao Amusement Park
Station, Baliqiao Station, Beigongmen Station, Caofang Sta-
tion, Changying Station, Communication University of China
Station, Cishousi Station, Ciqu Station, Ciqu South Station,
Dalianpo Station, Daotian Station, Fengbo Station, Gao-
midian North Station, Gongyixiqiao Station, Gonghuacheng
Station, Guanzhuang Station, Guangyangcheng Station,
Guoyuan Station, Houshayu Station, Huangcun Rail-
way Station, Huangcunxidajie Station, Huangqu Station,
Huilongguan Station, Huilongguan Dongdajie Station,
Huoying Station, Jiaomen West Station, Jiukeshu Station,
Jiugong Station, Liyuan Station, Libafang Station, Lishuiqiao
Station, Lishuiqiao South Station, Liangxiang University
Town West Station, Liangxiangnanguan Station, Linheli Sta-
tion, Liujiayao Station, Longze Station, Majiapu Station,
Maquanying Station, Nanfaxin Station, Nanshao Station,
Pingguoyuan Station, Puhuangyu Station, Qingnianlu Sta-
tion, Qingyuanlu Station, Shahe Station, Shahe University
Park Station, Life Science Park Station, Shilipu Station,
Shimen Station, Shuangqiao Station, Shunyi Station, Songji-
azhuang Station, Suzhuang Station, Tiantongyuan Station,
Tiantongyuan North Station, Tiantongyuan South Station,
Tongzhou Beiyuan Station, Tuqiao Station, Xihongmen Sta-
tion, Xiyuan Station, Xiaohongmen Station, Xingong Station,
Yihezhuang Station, Yizhuangqiao Station, Yongtaizhuang
Station, Yuxin Station, Yuanmingyuan Park Station,
Zaoyuan Station, Changyang Station, and Zhuxinzhuang
Station.

Thirty rail transit stations in cluster 4: Bagou Sta-
tion, Beijing South Railway Station, Beiyuan Station,
Cuigezhuang Station, Gaomidian South Station, Guchenglu
Station, Guangximen Station, Haidian Wuluju Station, Hep-
ingmen Station, Hualikan Station, Jishuitan Station, Jintailu
Station, Jinsong Station, Lincuiqiao Station, Qianmen
Station, Shangdi Station, Shaoyaoju Station, Sihui East
Station, Sunhe Station, Taiyanggong Station, Taoranting
Station, Tiangongyuan Station, Tongjinanlu Station,
Wanshoulu Station, Wukesong Station, Xixiaokou Station,

Xiaocun Station, Yizhuang Culture Park Station, Yuquanlu
Station, and Changchunjie Station.

Forty-five rail transit stations in cluster 5: Beixinqiao
Station, Chongwenmen Station, Ciqikou Station, Datunlu
East Station, Hepingli Beijie Station, Hepingxiqiao Sta-
tion, Huixinxijie Beikou Station, Huixinxijie Nankou Station,
Tiantandongmen Station, Zhangzizhonglu Station, Anding-
men Station, Anhuaqiao Station, Anzhenmen Station, Peking
University East Gate Station, Beitucheng Station, Caishikou
Station, Chegongzhuang Station, Chegongzhuang West Sta-
tion, Dazhongsi Station, Dongzhimen Station, Guloudajie
Station, Guogongzhuang Station, Huayuanqiao Station,
Jiandemen Station, Military Museum Station, Mudanyuan
Station,Muxidi Station, Nanlishilu Station, Ping’anli Station,
Renmin University Station, Sanyuanqiao Station, Shuangjing
Station, Sihui Station, Tuanjiehu Station, Wangjing Station,
Wangjing West Station, Weigongcun Station, Wudaokou
Station, Xisi Station, Xitucheng Station, Xizhimen Station,
Xinjiekou Station, Xuanwumen Station, Zhichunli Station,
and Zhichunlu Station.
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