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A B S T R A C T

In this paper, we construct a Hawkes process with time-varying base intensity to model the sequence of failure,
i.e., failure events of the compressor station, and we combine survival analysis and point process model on
various failure events of the compressor station based on Hawkes process. To our best knowledge, until now,
nearly all relevant literature of the Hawkes point processes assumes that the base intensity of the conditional
intensity function is time-invariant. This assumption is apparently too harsh to be verified. For example, in
the practical application, including financial analysis, reliability analysis, survival analysis and social network
analysis, the truth variation of the base intensity of the failure occurrence over time is not constant. The
constant base intensity will not reflect the base intensity trend of the failure occurring over time. Thus, in
order to solve this problem, in this paper, we propose a new time-varying base intensity, e.g. which is treated
as obeying Weibull distribution. First, we introduce the base intensity into a Hawkes process that obeys the
Weibull distribution, and then we propose an effective learning algorithm based on the maximum likelihood
estimator. Experiments on the constant base intensity synthetic data, time-varying base intensity synthetic
data, and real-world data show that our method can learn the triggering patterns of the Hawkes processes and
the time-varying base intensity simultaneously and robustly. Experiments on real-world data also reveal the
Granger causality of different types of failures and the base probability of failure varying over time. We put
forward some suggestions for practical production based on the experimental results.

1. Introduction

Learning point processes, especially the Hawkes processes from
irregular and asynchronous sequential data observed in continuous
time, is a challenging task. Meanwhile, point processes can be applied
to many fields, such as ad serving, disease prediction, and TV shows
recommendation. All of these sequential data can be modeled by a
point process, watched TV shows, clicked ads, and acquired illnesses
all can be seen as random events. We can use the Hawkes processes
to model the triggering patterns between the different types of events,
for instance, which TV show audiences are watching, which ad users
click and patient’s disease belongs to which subject. More specifically,
TV audiences will be more inclined to watch related programs after
watching a program. When a user clicks on an ad, they are likely
to click on another ad with the content associated with the previous
ad. Patients with certain diseases are more likely to have related
complications. Based on these phenomenons, we want to understand
the trigger pattern between various faults in the compressor station,
so we applied the point process model in the survival analysis of the
compressor station system failures.
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Because of the research of the causality relationship between dif-
ferent types of the events of the point process (Didelez, 2008), there
are a lot of research focusing on Hawkes process, which is proposed
by Hawkes (1971), and widely applied in many fields. Recently, an
effective method is proposed to learn multi-dimensional Hawkes pro-
cesses and Granger causality of different kinds of the events by learning
the impact function of Hawkes processes and the causality relationship
with different event types from the sequential data (Xu et al., 2016), Xu
et al. (2016) propose an effective method to learn Hawkes processes
and then use them to deduce the Granger causality hiding in the impact
function, and apply it into IPTV data, to reflect the trigger patterns
of users watching preference. From the perspective of the graphical
model, learning causality relationship with different event types is
equivalent to learning Granger causality graph. In Granger causality
graph, the line with an arrow connecting two types of events nodes
indicates that the event corresponding to the destination node depends
on the historical events of the event corresponding to the source node.

However, before this, learning Granger causality for general multi-
dimensional point processes with irregular and asynchronous event
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sequences is hard to accomplish. Lian et al. (2015) propose a method
that learns Granger causality by constructing features from history and
selecting them. Unfortunately, this method relies heavily on feature
constructing processes, may result in poor robustness. Han and Liu
(2013) propose a vector auto-regressive (VAR) model to learn Granger
causality from discrete time-lagged variables. Learning Granger causal-
ity from point processes is difficult because the event sequence of point
processes is continuously evolving over time and does not have the
fixed time-lag. So, it is hard to come up with an effective method to
capture the Granger causality between different types of the events,
and existing works nearly all focus on learning Granger causality from
time series (Arnold et al., 2007; Eichler, 2012; Basu et al., 2015).

In this paper, we devise a new time-varying Hawkes process and
make use of it to analyze the failure events sequences of the compressor
station. First, we utilize the Hawkes process to analyze the causal
relationship between different types of failures. We also devise the
approach to get the impact of the possibility of other failures after a
certain failure occurs. While analyzing the causal relationship between
failures of the compressor station, we also want to identify the base
intensity of each kind of failures occurred over time. However, this idea
is difficult to implement based on the existing Hawkes process model.
The reason is that nearly all the Hawkes processes models researcher
proposed, assume the base intensity is constant. This assumption has a
lot of restriction, for instance, in disease prediction, the base intensity
of patients getting disease should not be constant, it must be time-
varying, as the patient gets older, the risk of the getting sick should be
bigger, and in TV shows recommendation, the attractive of TV show is
also varying over time, should not be constant.

On the other hand, failure event sequences on the compressor sta-
tion have some characteristics that other event sequences do not have,
Fig. 1 depicts these characteristics of failure event sequences. During
the normal operation of the compressor station, the probability of
failure is relatively low, however, once a failure occurs, the likelihood
of derivative failures will increase relatively. Thus, on the time axis, the
distribution of failure events presents a sparse-clustering feature. We
call a sequence of events with such characteristics a sparse-clustering
sequence, the first failure in a clustering, we called as source failure. We
assume that the source failure did not receive the impact of the previous
failure history. When the device works normally, the failure occurs
sparsely, and after one failure occurs, due to the trigger pattern between
the source failure and derivative failures, there is a phenomenon of
clustering between them.

Thus, in order to better guide production, we do not only learning
the trigger patterns between different kinds of failures but also have
to figures out the probability of occurrence of source failures changing
with time, moreover, we also have to come up with a new framework
of the time base intensity of failures in Hawkes process.

Based on the above discussion, in this paper, we introduce a kind
of time-varying base intensity in Hawkes process, we treated the base
intensity as random distribution, whose parameters obey Weibull dis-
tribution, Weibull distribution is widely used in many fields, such as
survival analysis, reliability engineering and weather forecasting, it can
express the trend of the base intensity over time. Introducing Weibull
base intensity brings a new parameter into the model, we propose a
new effective algorithm to learn it. After estimating the parameter, we
can obtain the trend of the instantaneous occurrence rate of all kinds
of failures, which can help the maintenance staff to develop a plan
of equipment overhaul and maintenance to reduce the occurrence of
compressor failures and improve production efficiency, which can bring
greater economic benefits and safety benefits.

In Section 2, we discuss the related work about Survival analysis,
Weibull distribution, Point process and Granger causality. Then, we
introduce the basic concepts about point process, Weibull distribu-
tion and exponential distribution. Next, we theoretically deduce the
Weibull–Hawkes model and propose a learning algorithm for model
parameters. At last, we validate our model on two different synthetic

datasets, demonstrating that our model is valid for both time-varying
base intensity and constant base intensity, then, we validate our model
on real-world data, it proves that our model is more effective on the
real-world data, and obtains the base trend with time and the causal
relationship of all kinds of failures.

2. Related work

Survival analysis. Survival analysis is a branch of statistics for analyzing
the law of event occurrence as time goes by, such as death of infectious
patients and failure in mechanical systems. One of the most important
research content of survival analysis is time-to-event analysis. Time-
to-event analysis is to model and predict when certain events, such as
death, failure and disease attack, will occur. In addition, the time-to-
event data are including the occurring events, its time-stamps, and the
corresponding features of each individual. These characteristics of time-
to-event data are especially similar to the data characteristics of the
stochastic point process. The current research on survival analysis on
time-to-event data has produced many gratifying results. Li, Kan et al.
adopt survival analysis method on time-to-event data to predict the
conversion from cognitive impairment to Alzheimer’s Disease, which
is critically important for prevention Alzheimer’s Disease and targeted
treatment (Li et al., 2017). Leger, S. et al. combine survival analysis
and machine learning to model radiomics risk to predict patients’
cancer risk on time-to-event data (Leger et al., 2017). Tierney, Jayne
F., et al. propose a method to convert the time-to-event data to a less
statistical and more practical guidance and use it more appropriately
in meta-analysis (Tierney et al., 2007).

In engineering, survival analysis is called as reliability theory or re-
liability analysis, in economics, it is called duration analysis or duration
modeling, and in sociology it is called event history analysis. Duchateau
and Janssen (2007) systematically introduces the survival analysis and
propose the new frailty model. In the field of reliability analysis, there
have been many research results, such as Christodoulou (2011), Peña
and Hollander (2004) and Pereira et al. (2018). Based on the extensive
application of time-to-event analysis, reliability analysis, and their high
similarity to the point process model, we improved our point process
model with the knowledge of time-to-event analysis, to analyze the
reliability of the compressor station subsystems.

Weibull distribution. Weibull distribution is first identified by Mau-
rice Fréchet in 1927 and is first applied to describe a particle size
distribution by Paul Rosin in 1933. However, Swedish mathemati-
cian Waloddi Weibull, describe it in detail in 1951, so this distri-
bution is named as Weibull distribution. Weibull distribution is still
widely applied in so many areas, such as lifetime prediction (Ali et al.,
2015), reliability analysis (Bain, 2017), survival analysis (Cox, 2018),
weather forecasting and the wind power industry to describe wind
speed distributions (Mohammadi et al., 2016).

Point processes. The temporal point process is an event sequence ran-
domly located on time space where the knowledge related to survival
analysis can be applied. For instance, hazard function in survival analy-
sis is similar to the conditional intensity function in the temporal point
process. Thus, we will model the failure sequences of the compressor
station by Hawkes processes combine with survival analysis. First, we
need to introduce the most basic point process model, i.e., Poisson
process. Poisson processes (Vere-Jones, 2003) are the one of simplest
point process model, the difference between the other point processes
and Poisson processes is that the current event of Poisson process is
independent of the influence of historical events. The Poisson process
has the following conditional intensity function:

𝜆𝑐 (𝑡) = ℎ𝑐 (𝑡)

Generally speaking, Poisson process can be divided into two cat-
egories, Poisson process with time-varying ℎ𝑐 (𝑡), is commonly called
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Fig. 1. The schematic diagram of sparse-clustering sequence.

the nonhomogeneous or inhomogeneous Poisson process; Poisson pro-
cess with constant ℎ𝑐 (𝑡) is commonly called the homogeneous Poisson
process.

However, pure Weibull distribution, survival analysis or Poisson
process do not consider the trigger mode between various faults, so we
need to combine these theories with the Hawkes process and Granger
causality, then analyze the sequences of faults more effectively and
comprehensively. Hawkes processes (Hawkes, 1971) are proposed to
model the complicated event sequences that events occurred in the
past will affect the occurrence of future events. Hawkes processes is
an important kind of mutually exciting point processes which applies
to many practical fields, e.g., financial analysis (Embrechts et al., 2011;
Bacry et al., 2015), social network modeling (Zhou et al., 2013a), and
seismic analysis (Daley and Vere-Jones, 2007).

The multidimensional Hawkes process is described by its condi-
tional intensity function (similar as subhazard function in survival
analysis) which has following form:

𝜆𝑐 (𝑡) = ℎ𝑐 (𝑡) +
𝐶

∑

𝑐′=1
∫

𝑡

0
𝜙𝑐𝑐′ (𝑠)𝑑𝑁𝑐′ (𝑡 − 𝑠)

= ℎ𝑐 (𝑡) +
𝐶

∑

𝑐′=1
∫

𝑡

0
𝜙𝑐𝑐′ (𝑡 − 𝑠)𝑑𝑁𝑐′ (𝑠)

ℎ𝑐 (𝑡) in the equation of conditional intensity function is the base
intensity, which is independent of the history information. Generally
speaking, the Hawkes processes research introduced in this section
usually assumed that the base intensity is constant ℎ𝑐 (𝑡) = 𝜇 and
time invariant. Laub et al. (2015) give a detailed overview of the
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A counting process is almost surely finite, and is a right-continuous
step function which the size of increments is +1. Further, denoting
𝐻(𝑡), (𝑡 > 𝑇𝑏), 𝐻(𝑡) is the history of the arrivals up to time 𝑡. (Strictly
speaking, 𝐻(⋅) is a filtration, an increasing sequence of 𝜎-algebras.)

Definition 2 (Temporal Point Process). A Point process is a collection
of mathematical points randomly distributed in a mathematical space,
such as time and real space. The point process distributed in the
timeline is called as the temporal point process.

A temporal point process is a random process composed of the
sequence of events and the corresponding time stamp {𝑡𝑖} these events
occurred, where, 𝑡𝑖 ∈ [𝑇𝑏, 𝑇𝑒], 𝑇𝑏 is the beginning of the observation
window, 𝑇𝑒 is the end of the observation window. The temporal point
process can be represented as a counting process 𝑁 = {𝑁(𝑡)|𝑡 ∈
[𝑇𝑏, 𝑇𝑒]}, where 𝑁(𝑡) is a counting process, records the number of
events has happened before time 𝑡. Based on the above definition,
multi-dimensional point processes with 𝐶 types of the events can be
represented by 𝐶 counting processes {𝑁𝑐}𝐶

𝑐=1 on a probability space.
A point process can be described via its conditional intensity func-

tion
{

𝜆𝑐 (𝑡)
}𝐶

𝑐=1, the conditional intensity function is similar as the
hazard function in survival analysis.

Definition 3 (Conditional Intensity Function). Conditional intensity func-
tions is

{

𝜆𝑐 (𝑡)
}𝐶

𝑐=1, where 𝜆𝑐 (𝑡) represents the expected instantaneous
happening rate that the c-type event occurs instantaneously under a
given history record, whose definition is shown in Eq. (1).

𝜆𝑐 (𝑡) =
E(𝑁𝑐 (𝑡+𝑑𝑡)−𝑁𝑐 (𝑡)|𝐻(𝑡))

𝑑𝑡

= 𝑃 (type c event occurs in[𝑡,𝑡+𝑑𝑡)|𝐻(𝑡))
𝑑𝑡

= 𝑃 (type c event occurs in[𝑡,𝑡+𝑑𝑡)|no event occurred in[𝑡𝑖 ,𝑡),𝐻(𝑡))
𝑑𝑡

= 𝑃 (type c event occurs in[𝑡,𝑡+𝑑𝑡),no event in[𝑡𝑖 ,𝑡)|𝐻(𝑡))
𝑃 (no event occurred in[𝑡𝑖 ,𝑡)|𝐻(𝑡))𝑑𝑡

= 𝑝(𝑡,𝑐)
1−𝑃 (𝑡,𝑡𝑖)

(1)

where 𝑝(𝑡, 𝑐) is the conditional density of type 𝑐 events at time 𝑡, 𝐻(𝑡) is
the history affecting the type 𝑐 events. 𝑡𝑖 is the last events’ timestamp
before time 𝑡 and 𝑃 (𝑡, 𝑡𝑖) is the conditional cumulative function, equals
the possibility if there were any events happening in [𝑡𝑖, 𝑡). According
to Vere-Jones (2003), we can calculate 𝑝(𝑡, 𝑐) and 𝑃 (𝑡, 𝑡𝑖) based on
Eqs. (2) and (3):

𝑝(𝑡, 𝑐) = 𝜆𝑐 (𝑡) exp(−
𝐶

∑

𝑐′=1
∫

𝑡

𝑡𝑖
𝜆𝑐′ (𝑠)𝑑𝑠) (2)

𝑃 (𝑡, 𝑡𝑖) = 1 − exp(−
∑𝐶

𝑐′=1 ∫ 𝑡
𝑡𝑖 𝜆𝑐′ (𝑠)𝑑𝑠) (3)

For any sequence of events 𝑆 = {(𝑡𝑖, 𝑐𝑖)}𝐼
𝑖=1, we can calculate its

likelihood function as Eq. (4):

𝐿(𝑆;𝛩) =
∏𝐼

𝑖=1 𝑝(𝑡𝑖, 𝑐𝑖) × (1 − 𝑃 (𝑇𝑒, 𝑡𝐼 ))
=

∏𝐼
𝑖=1 𝜆𝑐𝑖

(𝑡𝑖) × exp(−
∑𝐶

𝑐=1 ∫ 𝑇

𝐶C
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occurrence should be evolving over time, rather than being a constant.
For example, high-quality TV shows will be more popular with evolving
over time, and as the kids grow older, young children will become
stronger and not get sick easily. If we assume the base intensity
is constant, the time-invariant model cannot grasp the information
mentioned above.

So, to overcome this drawback, and learn the event occurring
tendency with varying time, we introduce Weibull distribution into
Hawkes processes, which is widely applied in survival analysis. We
set ℎ(𝑡) = 𝜇𝜌𝑡𝜌−1, and then we can get corresponding one-dimensional
Poisson process 𝑝(𝑡, 𝑐)′ in Eq. (13):

𝑝(𝑡, 𝑐)′ = ℎ𝑐 (𝑡) exp(−∫

𝑡

0
ℎ𝑐 (𝑠)𝑑𝑠) = 𝜇𝑐𝜌𝑐 𝑡𝜌𝑐−1 exp(−𝜇𝑐 𝑡𝜌𝑐 ) (13)

where 𝜇𝑐 is the scale parameter, which defines the scale of the ℎ(𝑡),
𝜌𝑐 is the shape parameter that determines whether the function is
increasing or decreasing over time. Therefore, under this assumption,
the probability of event occurrence influenced by the base intensity
obeys the Weibull distribution.

Let us consider a special case, when we set 𝜌𝑐=1, the base intensity is
exponentially distributed. Thus, the exponential distribution is a special
case of the Weibull distribution when 𝜌𝑐=1, our proposed the Hawkes
processes introduced Weibull distribution is more general and take the
previous ones as special cases, which is suitable for a broad range of
application scenarios.

By observing the parameters obtained after learning the data of the
actual event sequence, we can get an estimate of the base instantaneous
happening rate at which a certain failure occurs at each time instant.
Especially the estimation of shape parameters 𝜌𝑐 : if 𝜌𝑐 < 1, then we can
know that the base instantaneous happening rate of 𝑐 kind of failure is
descending over time, on the contrary, if 𝜌𝑐 > 1, the base instantaneous
happening rate of 𝑐 kind of failure is increasing over time. Then we can
obtain the trend of the instantaneous occurrence rate of each type of
failure, and the compressors’ maintainer and manager can take targeted
adjustment measures to reduce the occurrence of failures.

Competing risks and multi-dimensional point process model. In addition,
we observe that multi-types events occur concurrently in competing
risks analysis (Pintilie, 2006; Crowder, 2006), and there are certain
competitive relationships between the events, for instance, patients
may pass away from different diseases, there is competition between
the diseases, a patient who died of a heart attack cannot be observed
his death from cancer. In competing survival analysis, the subhazard
function of each type of event is ℎ𝑐 (𝑡), where 𝑐 ∈ {1,… , 𝐶}, there are
𝐶 kinds of events. The definition of ℎ𝑐 (𝑡) is shown in Eq. (14) (Pintilie,
2006; Crowder, 2006):

ℎ𝑐 (𝑡) = lim
𝛥𝑡→0

𝑃 {𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡, type 𝑐 events occurred|𝑇 ≥ 𝑡}
𝛥𝑡

=
𝑓𝑐 (𝑡)
𝑆(𝑡)

(14)

where 𝑓𝑐 (𝑡) is 𝑐-type event probability subdensity function, can be
obtained by Eq. (15):

𝑓𝑐 (𝑡) = ℎ𝑐 (𝑡) exp(−
𝐶

∑

𝑐′=1
∫

𝑡

0
ℎ𝑐′ (𝑠)𝑑𝑠) (15)

Suppose that 𝑆𝑐 (𝑡) is subsurvival function of type-𝑐 event, represents
the probability that an individual will not be destroyed by the type-𝑐
event at the time 𝑡. 𝑆𝑐 (𝑡) and cumulative subdistribution function 𝐹𝑐 (𝑡)
of type 𝑐 event can be defined by Eq. (16):

𝑆𝑐 (𝑡) = 1 − 𝐹𝑐 (𝑡) = exp(−∫

𝑡

0
ℎ𝑐 (𝑠)𝑑𝑠) (16)

Overall survival function 𝑆(𝑡) is the probability that the individual
successfully survives to time 𝑡, overall cumulative distribution function
𝐹 (𝑡) and 𝑆(𝑡) is denoted as Eq. (17):

𝑆(𝑡) =
𝐶

∏

𝑐′=1
𝑆𝑐′ (𝑡) = exp(

𝐶
∑

𝑐′=1
−∫

𝑡

0
ℎ𝑐 (𝑠)𝑑𝑠) = 1 − 𝐹 (𝑡) (17)

In order to identify the similarity between multi-dimensional Hawkes
process and competing risk model, we also assume that no history event
happened in the past (𝑡𝑖 = 0) in a multi-dimensional Hawkes process,
under this assumption, we can see that 𝑓𝑐 (𝑡) in Eq. (15) and 𝑝(𝑡, 𝑐) in
Eq. (2) are equivalence, 𝐹 (𝑡) in Eq. (17) and 𝑃 (𝑡, 0) in Eq. (3) are equiv-
alence. This demonstrates that to some extent the multidimensional
Hawkes process is equal to the competitive risk model.

In survival analysis and competing risk model, we compare Eqs. (8)
and (15), and Eqs. (6) and (17), and we can see that the probability
of each event occurrence decreases because of the competition with
other events, and the survival function value is also reduced due to
the possibility of other possible negative events. Based on Eqs. (2) and
(3), we can see a consistent pattern. The point process changes from
one dimension to multiple dimensions, and the conditional probability
density 𝑝(𝑡, 𝑐) and the conditional probability 1−𝑃 (𝑡, 𝑡𝑖) that there is no
event occurred between [𝑡𝑖, 𝑡) also will decrease. In multi-dimensional
point process, there is also competition between events.

In summary, we can see that the point process model and sur-
vival analysis are very similar in nature. Under certain conditions,
multi-dimensional point process model and competitive risk model
are basically equivalence in mathematical form. The multidimensional
Hawkes process we applied already contains the characteristics of the
risk competing model. There are competitive relationships between the
different kinds of events in the multi-dimensional point process.

3.3. Hawkes processes and granger causality

A 𝐶-dimensional point processes generated a set of the event se-
quence, 1,… , 𝐶 ∈  are event types. Supposed that there is a subset
of event types  ⊂ , for the type 𝑐 of the event, intensity function
𝜆𝑐 (𝑡) only influenced by the history of 𝑐 type of event in  ,we denote
the history as 𝐻 (𝑡), the remaining history of event types is denoted
by 𝐻∖ (𝑡). In the view of Granger causality,  amount to the local
independence over the dimension of the point process. The occurrence
of history events in 𝐻 (𝑡) will affect the probability of occurrence of the
future c type of events, and the 𝐻∖ (𝑡) will not. For a subset  ⊂ , set
𝑁{𝑁𝑐 (𝑡)|𝑐 ∈ }, the filtration 𝐻 (𝑡), i.e., the smallest 𝜎-algebra, which
is generated by the point process, is defined as 𝜎{𝑁𝑐 (𝑠)|𝑠 ≤ 𝑡, 𝑐 ∈ }. In
particular, 𝐻𝑐 (𝑡) is the internal filtration of the counting process 𝑁𝑐 (𝑡),
𝐻−𝑐 (𝑡) is the filtration for the subset ∖{𝑐}.

Lemma 1 (Didelez, 2008). The counting process 𝑁𝑐 (𝑡) is locally indepen-
dent of 𝑁𝑐′ (𝑡) given 𝑁𝐶∖{𝑐,𝑐′}(𝑡) if the intensity function 𝐻𝑐 (𝑡) is measurable
with regard to 𝐻−𝑐 (𝑡) for all 𝑡 ∈ [𝑇 𝑛

𝑏 , 𝑇 𝑛
𝑒 ]. Otherwise, 𝑁𝑐 (𝑡) is locally

dependent.

Based on Lemma 1, we can apply it to Hawkes processes and then
establish the relationship between the impact function and Granger
causality. Lemma 1 is equivalent to type 𝑐′ of the event does not have
Granger causality with type 𝑐 of the event with regard to 𝐻(𝑡).

Generally speaking, the conditional intensity functions of multi-
dimensional Hawkes processes have following form, shown in Eq. (18):

𝜆𝑐 (𝑡) = ℎ𝑐 (𝑡) +
𝐶

∑

𝑐′=1
∫

𝑡

0
𝜙𝑐𝑐′ (𝑠)𝑑𝑁𝑐′ (𝑡 − 𝑠)

= ℎ𝑐 (𝑡) +
𝐶

∑

𝑐′=1
∫

𝑡

0
𝜙𝑐𝑐′ (𝑡 − 𝑠)𝑑𝑁𝑐′ (𝑠)

(18)

where ℎ𝑐 (𝑡) is the base intensity, which is independent of the history in-
fluence, and in general, ℎ𝑐 (𝑡) is a constant function,
∑𝐶

𝑐′=1 ∫ 𝑡
0 𝜙𝑐𝑐′ (𝑠)𝑑𝑁𝑐′ (𝑡 − 𝑠) is the endogenous intensity, indicates the

history of events’ effect on the 𝜆𝑐 (𝑡). 𝜙𝑐𝑐′ (𝑡) is impact function which
measures the influence of the historical type 𝑐′ events on the type 𝑐
events.

From what has been discussed above, in this paper, we assume
the impact function is stationary, i.e. time-invariant, and 𝜙𝑐𝑐′ (𝑡 − 𝑠) ≥

5
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0, (𝑇𝑏 ≤ 𝑠 < 𝑡 ≤ 𝑇𝑒). Based on this assumption, the work in Eichler et al.
(2017) reveal the connection between the impact function and Granger
causality.

Lemma 2 (Eichler et al., 2017). Assume that there exist a Hawkes process
with the conditional intensity function defined in Eq. (18). If the condition
𝑑𝑁𝑐′ (𝑡 − 𝑠) > 0, (𝑇𝑏 ≤ 𝑠 < 𝑡 ≤ 𝑇𝑒) holds, then if and only if 𝜙𝑐𝑐′ (𝑡) = 0
for 𝑡 ∈ [0,∞), type 𝑐 of event and type 𝑐′ of the event do not have Granger
causality relationship.

Therefore, for multi-dimensional Hawkes process, if we want to
learn its Granger causality between different types of the events, we
only have to confirm whether the impact function is all zero or not. It
converts the Granger causality learning problem to the learning impact
function problem.

After learning the sequence of failure events, we can get the impact
function between various failure events, so we get the trigger pattern
between all failures. In this way, we can take targeted measures to
reduce or avoid secondary failure events.

4. Proposed Hawkes processes with the time varying Weibull base
intensity and learning algorithm

In this section, we first introduce the Weibull base intensity to the
Hawkes processes, and then, we change the form of the conditional
intensity function, at last we proposed an efficient learning algorithm
based on MLE method and EM algorithm. Compared with existing
learning algorithms, our algorithm is more effective in identifying both
the base intensity and Granger causality.

4.1. Introducing the Weibull base intensity to the Hawkes processes

Following the above analysis and discussion, if we set ℎ(𝑡) = 𝜇𝜌𝑡𝜌−1,
then we can get the time varying conditional intensity function of
Hawkes process, like Eq. (19):

𝜆𝑐 (𝑡)=𝜇𝑐𝜌𝑐 𝑡𝜌𝑐−1 +
𝐶

∑

𝑐′=1
∫

𝑡

𝑇𝑏

𝜙𝑐𝑐′ (𝑡 − 𝑠)𝑑𝑁𝑐′ (𝑠)

= 𝜇𝑐𝜌𝑐 𝑡𝜌𝑐−1 +
𝐶

∑

𝑐′=1
∫

𝑡

𝑇𝑏

𝜙𝑐𝑐′ (𝑠)𝑑𝑁𝑐′ (𝑡 − 𝑠)

(19)

Compared with the normal form of Hawkes process, the base inten-
sity is replaced by 𝜇𝑐𝜌𝑐 𝑡𝜌𝑐−1 with 𝜇𝑐 , then in Hawkes process with time
varying conditional intensity function we introduce a new parameter𝜌𝑐 ,
we have to propose a new effective method to learn all the parameters,
including 𝜌𝑐 .

Here, what we need to emphasize is that the impact function of
a certain type of event on itself and its base intensity of the Weibull
form are two different concepts. Impact function 𝜙𝑐𝑐′ (𝑡) indicates the
effect of history events of type c on the occurrence probability of the
current type c of event occurrence, and the base intensity of the Weibull
form indicates the possibility of variation with time for occurrence
of the current type c of the event. For example, if an elderly person
gets sick, then in the future he will become more susceptible to illness
because of decreased immunity, and although an elderly person may
never get sick, the probability of his getting sick will also increase as
he grows older. Note that when we set 𝜙𝑐𝑐′ (𝑡) in Eq. (19), this definition
in Eq. (19) is equivalent to the normal Hawkes process proposed
in the literature, thus the previous proposed point processes model
based on Hawkes process is a special case of our proposed ones. Our
Hawkes process with the time varying base intensity has a better ability
to represent the time-varying characteristics of conditional intensity
function.

4.2. Formulating learning task

First, we parameterize 𝜙𝑐𝑐′ (𝑡) =
∑𝑀

𝑚=1 𝑎𝑐𝑐′𝑚𝑔𝑚(𝑡) as described by
Lewis, one can refer (Lewis and Mohler, 2011). Where 𝑔𝑚(𝑡) is the 𝑚th
kernel function, which is Gaussian function, and 𝒂𝑐𝑐′ = (𝑎𝑐𝑐′1,… , 𝑎𝑐𝑐′𝑚)
is the corresponding parameters of 𝑔𝑚(𝑡). Suppose that we have a set
of the event sequence, 𝑆 = {𝑠𝑛}𝑁

𝑛=1, 𝑠𝑛 = {(𝑡𝑛𝑖 , 𝑐𝑛
𝑖 )}

𝐼𝑛
𝑖=1. 𝑡𝑛𝑖 ∈ {𝑇 𝑛

𝑏 , 𝑇 𝑛
𝑒 } is

the time instant when the ith event happened in interval [𝑇 𝑛
𝑏 , 𝑇 𝑛

𝑒 ], and
𝑐𝑛
𝑖 ∈ {1,… , 𝐶} is the corresponding type of the event. According to the

definition of the conditional intensity functions Eqs. (1) and (4), the
likelihood can be expressed as follows:

(;𝛩) =
𝑁

∏

𝑛=1

{ 𝐼𝑛
∏

𝑖=1
𝑝(𝑡𝑖, 𝑐𝑖) × (1 − 𝑃 (𝑇 𝑛

𝑒 ))

}

=
𝑁

∏

𝑛=1

{ 𝐼𝑛
∏

𝑖=1
𝜆𝑐𝑛

𝑖
(𝑡𝑛𝑖 ) × exp

(

−
𝐶

∑

𝑐=1
∫

𝑇 𝑛
𝑒

𝑇 𝑛
𝑏

𝜆𝑐 (𝑠)𝑑𝑠

)}

Set 𝛩 = {𝑨 = [𝑎𝑐𝑐′𝑚] ∈ 𝐑𝐶×𝐶×𝑀 , 𝝁 = [𝜇𝑐 ] ∈ 𝐑𝐶 , 𝝆 = [𝜌𝑐 ] ∈ 𝐑𝐶}, the
log-likelihood function is shown in Eq. (20):

log(;𝛩) =
𝑁

∑

𝑛=1

{ 𝐼𝑛
∑

𝑖=1
log 𝜆𝑐𝑛

𝑖
(𝑡𝑛𝑖 ) −

𝐶
∑

𝑐=1
∫

𝑇 𝑛
𝑒

𝑇 𝑛
𝑏

𝜆𝑐 (𝑠)𝑑𝑠

}

=
𝑁

∑

𝑛=1

{ 𝐼𝑛
∑

𝑖=1
log

(

𝜌𝑐𝜇𝑐 𝑡𝑛𝜌𝑐−1
𝑖 +

𝑖−1
∑

𝑗=1

𝑀
∑

𝑚=1
𝑎𝑐𝑛

𝑖 𝑐𝑛
𝑗 𝑚𝑔𝑚(𝜏𝑖𝑗 )

)

−

( 𝐶
∑

𝑐=1

(

𝑇 𝑛
𝑒

𝜌𝑐 − 𝑇 𝑛𝜌𝑐
𝑏

)

𝜇𝑐 +
𝐼𝑛

∑

𝑖=1

𝑀
∑

𝑚=1
𝑎𝑐𝑐𝑛

𝑖 𝑚𝐺𝑚(𝑇 𝑛
𝑒 − 𝑡𝑛𝑖 )

)}

(20)

where 𝜏𝑖𝑗 = 𝑡𝑖 − 𝑡𝑗 , and 𝐺𝑚(𝑡) = ∫ 𝑡
0 𝑔𝑚(𝑠)𝑑𝑠.

In order to enhance the robustness and accuracy of our proposed
model, we consider incorporating the following two regularizers:

Temporal sparsity. The necessary condition for the stability of the
Hawkes process is that ∫ ∞

0 𝜙𝑐𝑐′ (𝑡) < ∞, which mean that impact func-
tion should satisfy the asymptotic stable constraint 𝜙𝑐𝑐′ (𝑡) → 0 as
𝑡 → ∞ (Xu et al., 2016). Therefore, we add 𝐿1-norm sparsity regularizer
to the parameters of 𝑔𝑚(𝑡), which is denoted as ‖𝑨‖1 =

∑

𝑐,𝑐′ ,𝑚
|

|

𝑎𝑐𝑐′𝑚
|

|

.

Local independence. Based on Lemma 2, if 𝜙𝑐𝑐′ (𝑡) = 0 for all 𝑡 ∈ [0,∞),
then the type 𝑐′ event has no effect on the type 𝑐 event. Thus we
incorporate 𝐿21-norm regularizer (Xu et al., 2016; Song et al., 2013;
Xu et al., 2010; Simon et al., 2013) to constraints the structure of
coefficients of 𝑔𝑚(𝑡), 𝐿2,1-norm is denoted as ‖𝑨‖1,2 =

∑

𝑐,𝑐′ ,𝑚
‖

‖

𝒂𝑐𝑐′
‖

‖2,
where 𝒂𝑐𝑐′ = [𝑎𝑐𝑐′1,… , 𝑎𝑐𝑐′𝑀 ] is the corresponding vector of 𝜙𝑐𝑐′ (𝑡). The
purpose of incorporating 𝐿2,1-norm regularizer is to ensure the group
sparsity of the coefficient tensor.

Thus, we can get the objective function of the Weibull–Hawkes
process is Eq. (21):

arg min
𝛩≥0

− log(;𝛩)+𝛼𝑆‖𝑨‖1 + 𝛼𝐺‖𝑨‖1,2 (21)

4.3. An EM-based algorithm

Similar to Xu et al. (2016), Lewis and Mohler (2011), Zhou et al.
(2013b) and Daley and Vere-Jones (2007), we propose an EM-based
learning algorithm to solve the optimization problem (10) iteratively.

Update 𝑨 and 𝝁. Given the parameters of the current step, we can
reconstruct the log-likelihood function by Jensen’s inequality, shown
in Eq. (22):

log(𝜇𝑐𝑛
𝑖
𝜌𝑐𝑛

𝑖
𝑡𝑖

𝜌𝑐𝑛
𝑖
−1

+
𝑖−1
∑

𝑗=1

𝑀
∑

𝑚=1
𝑎𝑐𝑛

𝑖 𝑐𝑛
𝑗 𝑚𝑔𝑚(𝜏𝑛

𝑖𝑗 )) ≥

𝑝𝑖𝑖 log(
𝜇𝑐𝑛

𝑖
𝜌𝑐𝑛

𝑖
𝑡𝑖

𝜌𝑐𝑛
𝑖
−1

𝑝𝑖𝑖
) +

𝑖−1
∑

𝑗=1

𝑀
∑

𝑖=1
𝑝𝑖𝑗𝑚 log(

𝑎𝑐𝑛
𝑖 𝑐𝑛

𝑗 𝑚𝑔𝑚(𝜏𝑛
𝑖𝑗 )

𝑝𝑖𝑗𝑚
)

(22)

6
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where:

𝑝𝑖𝑖 =
𝜇(𝑘)

𝑐𝑛
𝑖

𝜌(𝑘)𝑐𝑛
𝑖

𝑡𝑖
𝜌(𝑘)

𝑐𝑛
𝑖
−1

𝜆(𝑘)
𝑐𝑛
𝑖
(𝑡𝑛𝑖 )

and 𝑝𝑖𝑗𝑚 =
𝑎(𝑘)

𝑐𝑛
𝑖 𝑐𝑛

𝑗 𝑚
𝑔𝑚(𝜏𝑛

𝑖𝑗 )

𝜆(𝑘)
𝑐𝑛
𝑖
(𝑡𝑛𝑖 )

𝜆(𝑘)
𝑐𝑛
𝑖
(𝑡𝑛𝑖 ) is the conditional intensity function at 𝑡𝑛𝑖 with 𝑘th step param-

eters. Then, we can get a tight bound of log-likelihood function as
Eq. (23):

𝑄(𝛩;𝛩(𝑘)) =
𝑁

∑

𝑛=1

{

−

( 𝐶
∑

𝑐=1

(

𝑇 𝑛
𝑒

𝜌𝑐 − 𝑇 𝑛
𝑏

𝜌𝑐
)

𝜇𝑐 +
𝐼𝑛

∑

𝑖=1

𝑀
∑

𝑚=1
𝑎𝑐𝑐𝑛

𝑖 𝑚𝐺𝑚(𝑇 𝑛
𝑒 − 𝑡𝑛

𝑖 )

)

+
𝐼𝑛

∑

𝑖=1

(

𝑝𝑖𝑖 log
𝜇𝑐𝑛

𝑖
𝜌𝑐 𝑡𝑖

𝜌𝑐−1

𝑝𝑖𝑖
+

𝑖−1
∑

𝑗=1

𝑀
∑

𝑖=1
𝑝𝑖𝑗𝑚 log

𝑎𝑐𝑛
𝑖 𝑐𝑛

𝑗 𝑚𝑔𝑚(𝜏𝑛
𝑖𝑗 )

𝑝𝑖𝑗𝑚

)}

(23)

If and only if 𝛩=𝛩(𝑘), we have 𝑄(𝛩;𝛩(𝑘)) = log(;𝛩). So, we can
obtain the surrogate objective function:

𝐹 = −𝑄(𝛩;𝛩(𝑘)) + 𝛼𝑆‖𝑨‖1 + 𝛼𝐺‖𝑨‖1,2

Then, we can get the partial derivative of 𝐹 about 𝝁 and 𝑨 (see
Eqs. (24) and (25)):

𝜕𝐹
𝜕𝜇𝑐

=
𝑁

∑

𝑛=1

{

(

𝑇 𝑛
𝑒

𝜌𝑐 − 𝑇 𝑛
𝑏

𝜌𝑐
)

−
𝐼𝑛

∑

𝑖=1

∑

𝑐𝑖=𝑐
𝑝𝑖𝑖

1
𝜇𝑐

}

(24)

𝜕𝐹
𝜕𝑎𝑐𝑐′𝑚

=
𝑁

∑

𝑛=1

⎧

⎪

⎨

⎪

⎩

𝐼𝑛
∑

𝑖=1

⎛

⎜

⎜

⎝

𝐺𝑚(𝑇 𝑛
𝑒 − 𝑡𝑛𝑖 ) −

∑

𝑐𝑛
𝑖 =𝑐

∑

𝑐𝑛
𝑗 =𝑐′

𝑝𝑖𝑗𝑚

𝑎𝑐𝑐′𝑚

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

+𝛼𝑆 + 𝛼𝐺
𝑎𝑐𝑐′𝑚

‖

‖

‖

𝒂(𝑘)
𝑐𝑐′

‖

‖

‖2

(25)

Set 𝜕𝐹
𝜕𝜇𝑐

= 0, and 𝜕𝐹
𝜕𝑎𝑐𝑐′𝑚

= 0, we can get closed-form solutions of 𝜇𝑐
and 𝑎𝑐𝑐′𝑚, shown in Eqs. (26) and (27):

𝜇(𝑘+1)
𝑐 =

∑𝑁
𝑛=1

∑

𝑐𝑛
𝑖 =𝑐 𝑝𝑖𝑖

∑𝑁
𝑛=1 (𝑇 𝑛𝜌𝑐

𝑒 − 𝑇 𝑛𝜌𝑐
𝑏 )

(26)

𝑎𝑐𝑐′𝑚
(𝑘+1) = −𝐵 +

√

𝐵2 − 4𝐴𝐶
2𝐴

(27)

where:
𝐴 = 𝛼𝐺

‖

‖

‖

𝑎(𝑘)
𝑐𝑐′

‖

‖

‖

𝐵 =
𝑁

∑

𝑛=1

∑

𝑐𝑛
𝑖 =𝑐

𝐺𝑚(𝑇 𝑛
𝑒 − 𝑡𝑛𝑖 ) + 𝛼𝑆

𝐶 = −
𝑁

∑

𝑛=1

∑

𝑐𝑛
𝑖 =𝑐

∑

𝑐𝑛
𝑗 =𝑐′

𝑝𝑖𝑗𝑚

And if 𝛼𝑆 = 0 and 𝛼𝐺 = 0, we can get 𝑎𝑐𝑐′𝑚 by Eq. (28):

𝑎𝑐𝑐′𝑚
(𝑘+1) =

∑𝑁
𝑛=1

∑

𝑐𝑛
𝑖 =𝑐

∑

𝑐𝑛
𝑗 =𝑐′ 𝑝𝑖𝑗𝑚

∑𝑁
𝑛=1

∑

𝑐𝑛
𝑖 =𝑐′ 𝐺𝑚(𝑇 𝑛

𝑒 − 𝑡𝑛𝑖 )
(28)

Update 𝝆. Simultaneously, we can get the partial derivative of 𝐹 about
𝝆, shown in Eq. (29):

𝜕𝐹
𝜕𝜌𝑐

= −
𝑁

∑

𝑛=1

{

−𝜇𝑐 (ln 𝑇 𝑛
𝑒 ⋅ 𝑇 𝑛

𝑒
𝜌𝑐 − ln 𝑇 𝑛

𝑏 ⋅ 𝑇 𝑛
𝑏

𝜌𝑐 )

+
𝐼𝑛

∑

𝑖=1

∑

𝑐𝑛
𝑖 =𝑐

𝑝𝑖𝑖(ln 𝑡𝑖 +
1
𝜌𝑐

)

⎫

⎪

⎬

⎪

⎭

(29)

If we set 𝜕𝐹
𝜕𝜌𝑐

= 0, it is relatively hard to get the closed form solution of
𝝆. Thus, we tend to update the 𝝆 by the gradient descent method like
Eq. (30):

𝜌𝑘+1
𝑐 = 𝜌𝑘

𝑐 − 𝛼𝜌
𝜕𝐹
𝜕𝜌𝑐

(30)

where 𝛼𝝆 is the learning rate of 𝝆, and in order to determine when
the iterative processes terminate, we adopt a strategy called early
stopping (Caruana et al., 2001), i.e., if the objective function 𝐹 with
current parameters will increase, then the iterative processes will be
terminated. Algorithm 1 shows how to estimate the parameters of the
Weibull–Hawkes process.

Algorithm 1 EM-based Algorithm for Weibull–Hawkes process
(WBMLE-SGL))
Input: Event sequences {𝑆𝑛}𝑁

𝑛=1, trade-off parameters 𝛼𝑆 ,𝛼𝐺,𝛼𝝆 and 𝑘.
Output: Parameters of model 𝝁,𝝆 and A.
1: Initialize A = [𝑎𝑐𝑐′𝑚] and 𝝁 = [𝜇𝑐 ] randomly, set 𝝆 = [𝜌𝑐 ], 𝜌𝑐 = 1 .
2: repeat
3: repeat
4: Update 𝝁 and A via Eq. (26) and Eqs. (27) or (28) respectively.
5: until Convergence
6: Update 𝝆 via Eq. (30) 𝑘 times.
7: until The likelihood function is not changing or satisfies the early

stopping condition.

5. Experimental results

To verify the robustness and effectiveness of our proposed Hawkes
processes with the time varying base intensity more accurately, we
compare our model with the state-of-the-art model, MLE-SGLP (Xu
et al., 2016), which can reveal the Granger causality robustly and
accurately on synthetic datasets and real-world datasets with constant
base intensity. First, we generate sets of event sequence both with time-
varying base intensity and constant base intensity, respectively. Then
we test our proposed Weibull–Hawkes process model and compare it
to the MLE-SGLP and MLE model on these two kinds of synthetic
datasets. In order to Figure out the influence of regularizer, we consider
simultaneously two learning scenarios: the pure Weibull–Hawkes pro-
cess without any regularizer (WB), the Weibull–Hawkes process with
spare regularizer and group-lasso regularizer (WB-SGL). GL indicates
group regularizers, S indicates spare regularizers, and P indicates pair-
wise similar regularizers in Xu et al. (2016). To make the evaluation
of different models more intuitive, we apply the following measure
criteria:

(1) The log-likelihood of testing data, denote as Loglike;

(2) The relative error of 𝝁:

𝑒𝝁 =
‖𝝁̃ − 𝝁‖2

‖𝝁‖2

(3) The relative error of 𝝆:

𝑒𝝆 =
‖𝝆̃ − 𝝆‖2

‖𝝆‖2

(4) In order to testify the error of the base intensity function, we denote
a relative error of ℎ(𝑡) as:

𝑒ℎ(𝑡) =
1
𝐶

∑

𝑐∈𝐶

∫ 𝑇𝑒
𝑇𝑏

|

|

ℎ̃𝑐 (𝑡) − ℎ𝑐 (𝑡)|| 𝑑𝑡

∫ 𝑇𝑒
𝑇𝑏

ℎ𝑐 (𝑡)𝑑𝑡

(5) Because there are some impact functions which are all-zero, the
relative error of impact functions cannot be calculated, instead, we
choose the absolute error of impact functions:

𝛷(𝑡) = [𝜙𝑐𝑐′ (𝑡)]

𝑒𝛷 =
∑

𝑐,𝑐′
∫

𝑇

0
|

|

𝜙̃𝑐𝑐′ (𝑡) − 𝜙𝑐𝑐′ (𝑡)||𝑑𝑡

(6) Accuracy of Granger causality analysis via distinguishing the impact
function which is all-zero or not.
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After testing a variety of patterns with the synthetic data experi-
ment, we test our proposed models on real-world data: the failure event
sequence of 87 compressor station during twelve years. Learning our
model on these data reveals a lot of useful information in strategizing
the actual operation and maintenance of the compressor station. We
will introduce it in Section 5.4.

5.1. Data generating protocol

To assess the usefulness of our model, we generate the time-varying
base intensity data (Ogata, 1981). Our data has the two kinds of impact
functions: sine-like impact functions and square-like impact functions.
Each of them is a 5-dimensional Hawkes process and contains 500
asynchronous event sequences with the time length 50. The 𝝁 of each
event type is uniformly sampled from [0, 1

5 ], the 𝝆 of each event type
is uniformly sampled from [0.5, 1.5]. The sine-like impact functions are
generated as:

𝜙𝑐𝑐′(𝑡) =

{

𝐴𝑐𝑐′ (1 − cos(𝜔𝑐𝑐′ 𝑡 + 𝜑𝑐𝑐′ )), 𝑡 ∈ [0, 2𝜋−𝜑𝑐𝑐′
𝜔𝑐𝑐′

]

0, otherwise
𝑐, 𝑐′ ∈ 1,… , 5

where If 𝑐′ ∈ {1, 2, 3} and 𝑐 ∈ {1, 2, 3}, then 𝐴𝑐𝑐′ = 0.05, 𝜔𝑐𝑐′ =
0.6𝜋, 𝜑𝑐𝑐′ = 0; If 𝑐′ ∈ {4, 5} and 𝑐 ∈ {4, 5}, then 𝐴𝑐𝑐′ = 0.05, 𝜔𝑐𝑐′ =
0.4𝜋, 𝜑𝑐𝑐′ = 𝜋; If 𝑐′ ∈ {5} and 𝑐 ∈ {1, 2, 3} or 𝑐 ∈ {5} and 𝑐′ ∈ {1, 2, 3},
then 𝐴𝑐𝑐′ = 0; If 𝑐′ ∈ {4} and 𝑐 ∈ {1, 2, 3} or 𝑐 ∈ {4} and 𝑐′ ∈ {1, 2, 3},
then 𝐴𝑐𝑐′ = 0.02, 𝜔𝑐𝑐′ = 0.2𝜋, 𝜑𝑐𝑐′ = 𝜋. The square-like impact functions
are the truncated results of above sine-like impact functions. In order to
testify the MLE-SGLP model, we set three pairs of different events type:
[1, 2; 2, 3; 4, 5], which pairs of events type have the similar Granger
causality.

Algorithm 2 Generating Sequence Data of Hawkes Processes.
Input: scale parameter 𝝁, shape parameter 𝝆, impact functions 𝛷(𝑡) =

[𝜙𝑐𝑐′ (𝑡)] and length of sequence 𝑇 .
Output: Event sequence 𝑆𝑛.

Initialize t = 𝜀(𝜀> 0), 𝜀 is a small positive number, 𝑆𝑛 = ∅.
2: repeat

Calculate 𝑀 = max
∑𝐶

1 𝜆𝑐 (𝑡′) ,
4: where 𝑡′ ∈ [𝑡, 𝑡+max(𝑇𝑐𝑐′ )], 𝑇𝑐𝑐′ is the max period of all the 𝜙𝑐𝑐′ (𝑡),

and 𝜆𝑐 (𝑡′)=𝜇𝑐𝜌𝑐 𝑡′𝜌𝑐−1 +
𝑖−1
∑

𝑗=1

𝑀
∑

𝑚=1
𝑎𝑐𝑛

𝑖 𝑐𝑛
𝑗 𝑚𝑔𝑚(𝑡′ − 𝑡)

6: Generate an exponential r.v. 𝐸 with mean 1
𝑀 and an r.v. 𝑈

uniformly distributed on (0, 1).
repeat

8: Calculate 𝑜 =
𝑐′
∑

𝑐=1
𝜆𝑐 (𝑡 + 𝐸),𝑐′ ∈ 𝐶.

until 𝑜 ≥ 𝑀 ⋅ 𝑈
10: 𝑡 ← 𝑡 + 𝐸,𝑆𝑛 = 𝑆𝑛 ∩ {(𝑡, 𝑐′)}

until 𝑡 > 𝑇

Based on the Algorithm 2, we generate a set of event sequences we
have mentioned. Fig. 2 depicts the conditional intensity function and
the event-occurrence time of 5 types’ event sequences.

Fig. 2 describes the condition intensity functions’ curves and when
and which type the event occurred. We can find out that the higher
conditional intensity function, the higher possibility of the event oc-
curred synchronously. The following test of our model will be executed
on these event sequences.

5.2. Experimental results of time-varying base intensity data

5.2.1. The choice of hyper-parameters
First, we are supposed to test our model with various hyper-

parameters in a wide range, 𝛼𝑆 , 𝛼𝐺 ∈ [10−2, 103], the curves of Loglike

with regard to the two hyper-parameters are shown in following four
sub-figure in Fig. 3, the upper part is the sine-impact function and the
lower part is square-impact function.

When 𝛼G is changing within the range of [10−2, 103], 𝛼S is fixed at
10, when 𝛼S is changing within the range of [10−2, 103], 𝛼G is fixed at
100. We can find out that our model is relatively stable when the hyper-
parameters is changing in a wide range. According to the experimental
result, we can set 𝛼S = 10, and 𝛼G = 100.

5.2.2. Relative error of parameters
In the following subsections, we will compare the performance of

different models on all kinds of measure criteria, such as 𝑒𝝁, 𝑒𝝆, 𝑒ℎ(𝑡),
𝑒𝛷 and Loglike.

Based on discussion in Section 4.1, we know that MLE models fix
the value of 𝜌𝑐 to 1, so these models cannot fit the ℎ𝑐 (𝑡) well, intuitively,
we anticipate that the relative error of scale parameter 𝝁 for MLE
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Fig. 2. The conditional intensity function and event-occurrence time. The red curve above represents the intensity function, black points represent the time stamp of the
corresponding event.

Fig. 3. The curves of Loglike with the change of 𝛼𝑆 and 𝛼𝐺 .

Fig. 4. The curves of 𝑒𝝁 of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

9



L.-n. Zhang, J.-w. Liu and X. Zuo Engineering Applications of Artificial Intelligence 93 (2020) 103709

Fig. 5. The curves of 𝑒𝝆 of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

Fig. 6. The curves of 𝑒ℎ(𝑡) of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

Fig. 7. The curves of 𝑒𝛷 of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

Fig. 8. The curves of Loglike of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.
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Fig. 9. The curves of 𝜙𝑐𝑐′ of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

𝜙5,1, 𝜙5,2 and 𝜙5,3 are all zero. From Fig. 9, we can see that the estimate
of the WB-SGL model is the most accurate, which is consistent with
the value of 𝑒𝛷(𝑡). MLE-based model is misled by the time varying
base intensity, due to 𝜌5 ≈ 1.24, thus time varying base intensity
ℎ5(𝑡) is increasing. Meanwhile, MLE-based model assume that ℎ5(𝑡) is
a constant, thus the change of ℎ5(𝑡) is ignored and deteriorate the
estimate accuracy of 𝜙5𝑐′ , reflected in the experimental results, the
𝜙5𝑐′ estimate with MLE-based algorithm has a large margin of error.
Even the Gaussian basis functions do not fit the square-like impact
functions well, our model still can estimate them robustly. However,
the algorithm without regularizer has a worse performance, when the
impact functions are all zero, they cannot estimate the impact functions
accurately. Regularizers restrict the value of 𝑎𝑐𝑐′𝑚, make the estimate
more accurate, but also bring a disadvantage, the restricting the value
of 𝑎𝑐𝑐′𝑚 will obtain a lower parameter estimate of 𝑎𝑐𝑐′𝑚 and 𝜙𝑐𝑐′ (𝑡) =
∑𝑀

1 𝑎𝑐𝑐′𝑚𝑔(𝑡), the non-zero impact function estimate with regularizers
will lower than the ones without regularizers, this point of view can be
verified by the experimental results in Fig. 9.

5.3. Experimental results of constant base intensity data

In this subsection, to verify the robustness of our algorithms, we test
our model on the constant base intensity data (Xu et al., 2016). In this
case, assuming ℎ(𝑡) = 𝜇 will reduce the computational complexity and
reduce the interference caused by variable parameters, thus the MLE-
based algorithm will have a big advantage. We will still compare all
these models on all kinds of measure criteria, such as, 𝑒𝝁, 𝑒𝝆, 𝑒ℎ(𝑡), 𝑒𝛷
and Loglike.

5.3.1. Relative error of parameters
In Fig. 10, we can find that although in WB-based algorithm, we

already set the initial value of 𝜌𝑐 to 1, the interference caused by
the randomness of the event sequences still affects the estimate of
the parameter 𝝁. However, we can note that as the number of event
sequences increases, our algorithm’s estimates of 𝝁 are more and more
accurately. When the number of event sequences is 250, estimate
accuracy of our proposed algorithm is basically close to the MLE-based
algorithm.

In Fig. 11, we see that MLE-based algorithms assume 𝜌𝑐 is fixed to
1, thus there is no the estimate error for 𝜌𝑐 with MLE-based algorithms.
Although WB-based algorithms set the initial value of 𝜌𝑐 to 1, but
because of the randomness of the event sequences, the estimate of 𝜌𝑐
will fluctuate around the true value. From the experimental results
we can get that with increasing the number of event sequences, the
estimate of 𝜌𝑐 is more accurate, the relative error is already less than
5%.

As showed in Fig. 12, because of the estimate error of 𝝆 and 𝝁, the
relative error of ℎ(𝑡) with WB-based algorithm is larger than MLE-based
algorithm, the relative error with WB-SGL algorithm is closed to the

Table 1
The 𝑒𝛷(𝑡) effected by the time varying ℎ(𝑡) (N=250)

(a) WB-based method

Sine-impact function Square-impact function

WB-SGL WB WB-SGL WB

Time varying ℎ(𝑡) 0.7633 0.7811 1.1344 1.1337
Constant ℎ(𝑡) 0.7712 0.8216 1.1197 1.1157

(b) MLE-based method

Sine-impact function Square-impact function

MLE-SGLP MLE MLE-SGLP MLE

Time varying ℎ(𝑡) 0.7729 0.8983 1.2184 1.265
Constant ℎ(𝑡) 0.6613 0.795 1.0846 1.103

MLE algorithm, which will affect the estimate accuracy of the impact
functions.

From Fig. 13 and Table 1, we can find out that our proposed
algorithm is more robust than MLE-based algorithm, the varying range
of the estimate error of MLE-based algorithm’s impact function 𝑒𝛷(𝑡), is
quite larger than WB-based algorithm, although in constant intensity
event sequence, MLE-SGLP model has the most accurate estimate of
𝛷(𝑡). There is another very interesting findings. In square-like case, the
performance of WB-based algorithm in constant ℎ(𝑡) event sequence is
a little better than in time varying ℎ(𝑡) event sequence. In our view,
the reason for this phenomenon is that, with constant base intensity,
the assumption that the base intensity is time-varying compensates for
incompatibility between Gaussian basis functions 𝑔𝑚(𝑡) and square-like
impact functions 𝜙𝑐𝑐′ (𝑡).

Based on the above discussions, we will analyze Loglike of different
models. Undoubtedly, from Fig. 14, we can find that the Loglike of
MLE-SGLP model is the highest than other models, which verifies
that MLE-SGLP model is superior to other models, and WB-SGL model
is superior to the pure MLE model. However, the most important
point is that the difference between the Loglike of those algorithms is
smaller than in time-varying ℎ(𝑡) event sequences. At the same time,
the analysis results of the relative errors of other parameters can also
verify this, such as 𝑒𝝁, 𝑒𝝆, 𝑒ℎ(𝑡), and 𝑒𝜱. This validates that the WB-
based algorithm we proposed have a strong stability and robustness,
both on the time-varying ℎ(𝑡) event sequences and constant ℎ(𝑡) event
sequences, WB-based algorithm can obtain more accurate parameter
estimation and have a stronger generalization ability.

5.3.2. Curves of the impact functions
Fig. 15 illustrates the estimates of the impact functions obtained by

these four algorithms on constant ℎ(𝑡) event sequences. The algorithms
with regularizers, such as MLE-SGLP and WB-SGL algorithm, are more
accuracy in finding the Granger causality. Pure WB algorithm’s per-
formance is worst, because of the estimation error of ℎ(𝑡) and without
using the regularizers for 𝑎𝑐𝑐′𝑚.
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Fig. 10. The curves of 𝑒𝝁 of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

Fig. 11. The curves of 𝑒𝝆 of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

Fig. 12. The curves of 𝑒ℎ(𝑡) of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

Fig. 13. The curves of 𝑒𝛷 of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.
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Fig. 14. The curves of Loglike of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

Fig. 15. The curves of 𝜙𝑐𝑐′ of the four sorts of models: WB,WB-SGL, MLE, and MLE-SGLP.

Table 2
The 14 types of failures.

Index Failure types

1 Gas Generator system failure
2 Motor system failure
3 Engine system failure
4 Power supply system failure
5 Fuel gas system failure
6 Lubricating oil system failure
7 Intake system failure
8 Control system failure
9 Cooling system failure
10 Firefighting system failure
11 Compressor system failure
12 Instrument air system failure
13 Process system failure
14 Other failure

5.4. Real-world data

In this section, we will verify the validity of our proposed model on
real-world data. This data is labeled by us and is named as compressor
station failure dataset. And on this data set we set 𝛼𝑆 = 1 and 𝛼𝐺 = 1.
The data set contains 87 compressor stations’ failure event sequences
from March 2006 to October 2018. There are 14 subsystems in each
compressor station, so all the failures are categorized into 14 categories
as Table 2 according to the subsystem in which the failure occurred.

All of these types of failures have both self-triggering and mutually-
triggering patterns. For instance, if the engine system fails, the possi-
bility of future engine system failure will increase (self-triggering), if
the gas generator system fails, the possibility of future control system
failure will increase (mutually-triggering). Not only that, the trend
of the base intensity of each system failure with time can also be
obtained through learning which is depending on the parameters 𝝆 and

Table 3
The Loglike of various models on real-world data.

WB series model MLE series model

WB-SGL WB-S WB-GL WB MLE-SGL MLE-S MLE-GL MLE
−5054.8 −5055.8 −5056.21 −5061.3 −5755.3 −5610.3 −5760.7 −5764.5

𝝁. Thus, we model the failure event sequence via a Hawkes process with
time-varying base intensity, which is from Weibull distribution, while
Weibull distribution is already widely used in reliability analysis, then
we can learn the Granger causality among the failure categories and
the varying trend of base intensity.

5.4.1. The Loglike of different models
The sequence of failure events of eighty compressor stations is used

as training data, and the sequence of failure events of the remaining
compressor stations is used as test data. Consider the fact that the
compressor station is inspected for each production quarter and the
shortest stable running time is three days, we set the length of time
of the impact function to be 90 days (the influence of a failure will not
exist in a production quarter), and the number of basis function 𝑀 = 31
(sampling every 72 h). The parameter of the kernel Gaussian function
is defined as:

𝜎= 90
30 × 2

=1.5

Table 3 lists the Loglike obtained via 8 sorts of models (WB-SGL,
WB-S, WB-GL, WB, MLE-SGL, MLE-S, MLE-GL, and MLE) with com-
pressor station failure data. We can figure out that the WB models are
far better than the MLE models, and WB-SGL model obtains the best
experimental result. This is in line with the assumptions we made at
the beginning of this paper, the base intensity of the Hawkes process
is not a constant in practical applications, but a time-varying function.
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And we assume that the base intensity is consistent with the Weibull
distribution and it has achieved better results in practical applications.

5.4.2. The estimation of Weibull base intensity parameters
In order to get the most accuracy estimation of the parameters

to analyze the failures’ occurrence, we learn our model on the all
failure event sequence. Table 4 shows the estimates of 𝜇 and 𝜌 via four
different WB-based models. We can see that the parameter estimates
of different models are basically the same, which can verify that our
algorithm is stable. Below we analyze the reliability of the compressor
station with the parameters of the best model on test results, i.e., the
WB-SGL model.

Based on the estimates of parameters 𝜇 and 𝜌 with WB-SGL model,
we can figure out that these compressors stations are in normal working
condition and have superior reliability. However, there are still two
issues that need our attention. For instance, Control system, Cooling
system, Compressor system and Instrument system failure have a higher
value of scale parameter, and a lower value of shape parameter 𝜌,
according to the definition of hazard function of Weibull base intensity
ℎ(𝑡) = 𝜇𝜌𝑡𝜌−1, these failures are more likely to occur when the com-
pressor station is just starting production, and the likelihood of these
occurred failures will gradually decrease over time.

On the other hand, for Fuel gas system failures, Intake system
failures, Firefighting system failures and other failures, due to the high
value of 𝜌 (𝜌 > 0.9), although it is still less than 1, the parameter
estimation error, the environmental negative affect, misoperation, and
equipment aging, etc., may gradually shift the hazard function from
decreasing over time to increasing over time, thus we need to pay at-
tention to the risks of these failures after a long run. The exciting thing
is that the estimated trend of system reliability based on parameters
is consistent with the experiences of the operation and maintenance
experts of the compressor station. This proves the validity and accuracy
of our proposed algorithm.

5.4.3. Granger causality of different models
In this subsection, we will analyze the trigger patterns of all kinds of

failures. We test the four models both on our model and the MLE model
on the entire data set. In order to more intuitively represent the causal
relationship between each type of fault, we construct the infectivity
matrices of different types of failures in Fig. 16. The element in the
𝑐th row and the 𝑐′th column of the infectivity matrices is ∫ ∞

0 𝜙𝑐𝑐′ (𝑠)𝑑𝑠.
The infectivity matrices of the same series of models are basically the
same, so here we only show the infectivity matrices of the WB-SGL and
the MLE-SGL model.

The closer the color in the matrix is to blue, which indicates the
weaker the causal relationship between the two types of faults. We can
see that most of the elements in most infectivity matrices are dark blue,
which reflects the sparseness of Granger causality. From Fig. 16, It can
be seen that the sparsity of our proposed model is better than that of
the MLE-SGL model.

In general, after a certain type of fault occurs, the probability of
occurrence of this fault will increase. This means that after a certain
type of fault occurs, there is a possibility of a secondary failure in a
short period of time. The infectivity matrices reveal this phenomenon:
the main diagonal elements of the infectivity matrices are larger than
most other elements in the matrices. Especially in engine system, motor
system, power supply system, and lubricant system’s diagonal elements
are larger than other main diagonal elements. This result implies that
Engine system failure has the strongest self-trigger correlation, which
implies that if an engine system failure occurred, then the probability
of a secondary failure occurring within 90 days is quite large. Motor
system, power supply system, and lubricant system are also prone to
secondary failures.

In addition, after other systems fail, the control system is most
susceptible to failures caused by remain system failures, such as the gas
generator system failure, power supply system failure, instrument air

system failure and other failure. This reflects the susceptibility of the
control system, because there are intimate relations between control
system and other system.

For a more detailed analysis of Granger causality between failures
and impact function (which indicates failure probability under the
influence of historical fault events) over time, we rank the infective
element from high to low, and show the top-28 impact functions in
Fig. 17. Observing top-28 impact functions, we can roughly divide the
impact function into three categories.

First, depending on whether the impact functions have a delay part,
we divide the trigger pattern of failures into two categories. If the
impact functions are close to 0 at the beginning, then we call these
trigger patterns as delay trigger patterns. Such as 𝜙8,13 and 𝜙7,10 in
Fig. 17 at the beginning, the value of this type of impact function
is not very high, even close to 0, but one or more spikes suddenly
will appear over time, operation and maintenance personnel need to
pay more attention to possible secondary faults at the corresponding
moments where the spikes appear. From the perspective of the control
field, the reason of this occurring phenomenon may be that there is a
delay between these systems, i.e. firefighting system to intake system
and process system to control system.

In Table 5, we will list the characteristics of delay trigger patterns,
including the length of the delay and the moment when the peak risk
occurs.

Secondly, according to the attenuation of the impact function, we
divide the rest impact function into two categories. If the impact
function can decay to 10% of its maximum value within 50 days,
then we consider the trigger pattern between the two failures is stable,
otherwise, it is unstable.we use 𝜙3,3 and 𝜙2,2 as examples, which is the
illustration in Fig. 17. When a fault just occurs, the probability of a
secondary fault is very high, but it gradually decreases with time. The
impact functions of this category are mainly the self-trigger impact
function of the failures. When these faults occur, the operation and
maintenance personnel should remain vigilant within a short period of
time after handling the fault to prevent occurring secondary faults, such
as engine system failure, motor system failure, power supply system
failure, control system failure, cooling system failure, gas generator
system failure, Fuel gas system failure, compressor system failure,
instrument air system failure, and Intake system failure. In Table 6, we
will list the higher risks duration of stable failure trigger.

More specifically, for a stable trigger pattern, after a failure occurs,
the probability of occurrence of a derivative fault is generally reduced
with time, while for the unstable trigger pattern, the probability of
occurrence of a derivative failure is only slightly reduced, or instead
will increase. Such as 𝜙8,12 and 𝜙8,5 depicting in Fig. 17, this kind of
impact function has a large value in a short time after the source failure
occurs, and there are still several peaks appearing with the passage of
time. After handling the source fault, the operation and maintenance
personnel should not only be vigilant in a short period of time, but
also should be vigilant at the moment of the corresponding peak value
to prevent the occurrence of secondary faults, Such as instrument air
system to control system and fuel gas system to control system. We
will list the peak appearance time of unstable failure trigger patterns
in Table 7.

In summary, after we know the sequence of historical failure events,
we can use the learned Weibull–Hawkes model to predict future fail-
ures, so as to respond to measure and reduce potential economic and
security losses.

6. Conclusion

In this paper, we modify the structure of the Hawkes process,
introduce a time-varying base intensity obeying Weibull distribution,
the Weibull base intensity, and propose a series of Hawkes process
model. Based on our proposed model and the EM-based algorithm,
we provide an algorithm that effectively learns the parameters in the
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Table 4
The parameter estimation of various models on real-world data.

Index WB-SGL WB-S WB-GL WB

Parameter 𝜇 𝜌 𝜇 𝜌 𝜇 𝜌 𝜇 𝜌

1 0.004168 0.676046 0.004158 0.676254 0.004166 0.676083 0.004164 0.676103
2 0.002214 0.69372 0.002216 0.693572 0.002219 0.69345 0.002219 0.69341
3 0.000413 0.894198 0.000412 0.894285 0.000413 0.894166 0.000412 0.894279
4 0.003276 0.886825 0.003273 0.88689 0.003276 0.886823 0.003273 0.886886
5 0.000433 0.907548 0.000432 0.907589 0.000433 0.907548 0.000432 0.907592
6 0.001012 0.810709 0.001011 0.810765 0.001013 0.810642 0.001011 0.810756
7 0.000263 0.940528 0.000262 0.940535 0.000263 0.940528 0.000262 0.940557
8 0.01711 0.763604 0.017102 0.763622 0.017122 0.763525 0.017098 0.763646
9 0.001053 0.779977 0.001052 0.780047 0.001054 0.779939 0.001053 0.779989
10 9.08 × 10−5 0.980752 9.07 × 10−5 0.980747 9.08 × 10−5 0.980753 9.07 × 10−5 0.980745
11 0.0129 0.595825 0.012873 0.596012 0.012892 0.595895 0.012874 0.596006
12 0.008312 0.433294 0.00829 0.43353 0.008317 0.433229 0.008294 0.433486
13 0.000224 0.895607 0.000223 0.895686 0.000224 0.895594 0.000224 0.895627
14 1.85 × 10−5 0.985088 1.85 × 10−5 0.9851 1.85 × 10−5 0.985088 1.85 × 10−5 0.985104

Fig. 16. The infectivity matrices of WB-SGL and MLE-SGL. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 17. The curves of the top-28 𝜙𝑐𝑐′ (𝑡) between different types of failures.
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Table 5
The characteristics of delay trigger patterns.

Failure trigger Length of the delay (d) Peak occurrence time (d)

Process system failure to Control system failure 10 18.00
Firefighting system failure to Intake system failure 4 14.65
Other failure to Gas Generator system failure 45 53.20

Table 6
Higher risks duration of stable failure trigger.

Failure trigger Higher Risks duration (d)

Engine system failure to Engine system failure 0–10.0
Motor system failure to Motor system failure 0–20.5
Power supply system failure to Power supply system failure 0–48.7
Lubricating oil system failure to Lubricating oil system failure 0–3.4
Control system failure to Control system failure 0–37.2
Gas Generator system failure to Gas Generator system failure 0–33.9
Process system failure to Process system failure 0–22.1
Instrument air system failure to Instrument air system failure 0–30.9

Table 7
Peak appearance time of unstable failure trigger.

Failure trigger Peak occurrence time (d)

Other failure to Control system failure 0.0
Instrument air system failure to Control system failure 48.0
Fuel gas system failure to Control system failure 3.0
Cooling system failure to Cooling system failure 0.0
Gas Generator system failure to Control system failure 0.0
Instrument air system failure to Power supply system failure 2.9
Fuel gas system failure to Fuel gas system failure 0.0
Intake system failure to Control system failure 33.0
Instrument air system failure to Compressor system failure 0.0
Process system failure to Control system failure 18.0
Intake system failure to Intake system failure 0.0
Motor system failure to Power supply system failure 39.0
Instrument air system failure to Gas Generator system failure 78.0
Firefighting system failure to Control system failure 6.0
Firefighting system failure to Gas Generator system failure 15.0
Firefighting system failure to Firefighting system failure 6.0
Compressor system failure to Control system failure 0.0

model. To demonstrate the effectiveness, stability, and robustness of
our model, we tested our proposed approaches both on time-varying
base intensity data and constant base intensity data.

The most important point, which deserves our attention, is that
in the practical application of the Hawkes process, assuming the base
intensity is constant is extremely unrealistic. This assumption constricts
the development of the Hawkes process in practical applications. Set-
ting ℎ(𝑡) is time-varying is more flexible and more generalization. This
assumption is more in line with the needs of real-world applications.
We train our model on the historical data of the compressor station
failure, obtain a lot of valuable experimental results worth analyzing.
After that, we make some suggestions for the actual production of the
compressor station.

In the future, we are interested in the following work: create a better
parameter learning algorithm and devise a new point process model
that better fits the needs of actual production applications.
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